Расчет и изготовление воздушного винта. Расчет и изготовление воздушного винта Предотвратить обледенение возможно двумя путями

Делаем порог

Изобретение относится к способу определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта. Для определения напряжений измеряют летно-технические характеристики штатными средствами в течение всего времени полета, из них выбирают и систематизируют значимые параметры, определяют их аппроксимирующие функции с целью получения итоговой функции зависимости напряжений в вале несущего винта от выбранных параметров летно-технических характеристик, рассчитывают нагрузки на вал несущего винта с помощью математической модели, сигнализируют в случае их превышения. Обеспечивается определение остаточного ресурса и контроль допустимого уровня нагрузок. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области авиации, в частности к системам мониторинга технического состояния летательных аппаратов, а именно мониторинга уровня изгибных напряжений вала несущего винта вертолета в полете, в частности для легкого многоцелевого вертолета с бесшарнирным креплением лопастей, например вертолетов: АНСАТ, ВК-117, ЕС-145.

Трансмиссия является наиболее сложным элементом конструкции вертолета. Известно, что наибольший процент катастроф вертолетов (до 39%) по статистике связан именно с отказом агрегатов трансмиссии вертолета.

На этапе разработки систем мониторинга наиболее важным является определение и установление диагностических признаков технического состояния агрегатов трансмиссии вертолета. Главная задача при разработке системы мониторинга - установление пороговых значений диагностических признаков, при достижении которых в эксплуатации должны быть приняты соответствующие решения о дальнейшей безопасности полетов. Если какой-либо диагностический признак достиг своего порогового значения, то далее принимается решение об ограничении ресурса, о внеочередной замене какой-либо детали, или об отстранении агрегата трансмиссии от эксплуатации. Как правило, подавляющее большинство диагностических признаков не выводятся на индикацию в кабине пилотов во время совершения полета. Их анализ проводится после завершения полета. Однако некоторые особо ответственные диагностические признаки могут выводиться на индикацию в процессе полета, если того требуют условия безопасности.

В последние десятилетия на перспективных вертолетах стали применяться так называемые бесшарнирные несущие винты, оснащенные бесшарнирной втулкой, в которой функции горизонтального, вертикального и осевого шарниров выполняет упругий элемент протяженного типа - торсион. Основной частью конструкции торсиона является упруго-деформируемый участок. Наличие переклейки слоев и прорезей обеспечивает ручьям торсиона нагружение преимущественно в одноосном напряженно-деформированном состоянии с поперечным сдвигом и изгибом при качании лопасти в плоскости вращения. Это позволяет снизить стоимость эксплуатации вертолета, но при этом увеличиваются начальные затраты на проектирование и изготовление таких конструкций. Поэтому точность прогнозирования нагружения и, соответственно, оценки ресурса несущей системы вертолета является на сегодняшний день одной из ключевых задач вертолетостроения.

Вал несущего винта нагружается силами и моментами от его втулки и крутящим моментом, создаваемым на выходе главного редуктора. Длина вала несущего винта определяется компоновочными, аэродинамическими и эксплуатационными соображениями.

Поскольку полужесткая втулка имеет больший изгибающий момент по сравнению с шарнирной, контроль изгибных напряжений вала несущего винта вертолета с бесшарнирной втулкой в полете является актуальной задачей.

Известна система мониторинга нагружения вала несущего винта (патент США №2010219987, SIKORSKY AIRCRAFT, дата публикации 02.09.2010, МПК G06F 15/00, G08B 21/00).

Способ виртуального контроля нагрузки на систему несущего винта вертолета в соответствии с одним из вариантов осуществления настоящего изобретения включает в себя отбор, по меньшей мере, одного параметра летательного аппарата за один полный оборот несущего винта. Расчет коэффициентов для получения совокупности высокочастотных сигналов от параметра, по меньшей мере, одного летательного аппарата. Умножение каждого из множества высокочастотных сигналов на коэффициент для получения совокупности проанализированных сигналов. Оценка нагрузки на несущий винт на основе проанализированных сигналов.

Система определения состояния несущего винта в режиме реального времени в соответствии с одним из вариантов осуществления настоящего изобретения включает в себя систему датчиков, предназначенную для измерения нагрузок для получения данных. Модуль выполнен с возможностью виртуального контроля нагрузок для получения расчетных данных и обнаружения неисправностей в режиме реального времени и получения алгоритма вычитания расчетных сигналов из измеренных сигналов для получения значений, которые затем сравниваются со стандартными значениями, чтобы выдать окончательный результат о состоянии несущего винта.

Датчики считывают такие параметры, как взлетная масса летательного аппарата, высота по плотности, скорость вращения несущего винта, скорость воздушного потока, нормальное ускорение, вертикальная скорость набора высоты, крутящий момент двигателя, угол тангажа, угол крена, угловая скорость рыскания, угловая скорость по тангажу, угловая скорость крена, отклонение в продольном направлении, поперечное положение, положение педали и совокупность позиций за один оборот несущего винта. Вектора заданных шестнадцати параметров умножаются на заданные значения матрицы, включающей в себя 10 строк и 16 столбцов, для получения десяти коэффициентов (c1, с2, с3, с4, с5, с6, с7, с8, с9, и с10) для определения десяти значений колебаний. Значения колебаний умножаются на коэффициент для получения усиленных колебаний. Если вектора колебаний обозначить как w1, w2, w3, w4, w5, w6, w7, w8, w9, и w10, а коэффициенты - c1, c2, c3, c4, c5, с6, c7, c8, c9, и с10, то расчетный сигнал усилия сдвига вала несущего винта запишется в виде:

L=c1*w1+c2*w2+c3*w3+c4*w4+c5*w5+c6*w6+c7*w7+c8*w8+c9*w9+c10*w10

Амплитуда и фаза усилия сдвига рассчитываются через преобразование Фурье.

Известна система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета (патент РФ на изобретение №2519583, опубл. 27.02.2014 г., МПК B64D 45/00), включающая пьезоэлектрические датчики вибрации, которые установлены на корпусе, по меньшей мере, одного из агрегатов привода винтов вертолета и расположены так, что получают данные с полнотой, достаточной для диагностики технического состояния деталей, узлов, по меньшей мере, одного агрегата привода винтов работающего вертолета, и бортовой электронный блок. Электронный блок связан с выходами датчиков вибраций и выполнен с возможностью цифровой обработки вибросигналов, управления и осуществления сбора, первичной обработки и оценки параметров сигналов отдельных датчиков и/или их комбинаций, накопления данных датчиков и сохранения их на внешних и/или съемных носителях, пригодных для считывания компьютером, и вторичной обработки в наземных условиях. Повышается эффективность сбора данных, информативность контроля и диагностики технического состояния агрегатов привода винтов работающего вертолета.

Недостатком данной системы контроля является невозможность по измеренным в полете вибрациям сделать однозначный вывод об уровне усталостных напряжений в агрегатах вертолета, в том числе и в вале несущего винта. Также недостатком является необходимость установки на вертолетах датчиков и электронных блоков, затраты времени для вторичной обработки данных в наземных условиях.

Известен способ эксплуатации вертолета (патент РФ №2543111, опубл. 27.02.2015, МПК В64С 27/04, B64F 5/00, G01L 3/24), заключающийся в том, что при каждом полете осуществляют контроль фактической тяги несущего винта вертолета, причем предварительно перед началом эксплуатации вертолета осуществляют сбор исходных данных по характеристикам двигателей силовой установки в соответствии с формулярами и сбор исходных данных по величине тяги несущего винта при контрольных висениях вертолета. В течение всего времени эксплуатации вертолета осуществляют сбор и фиксацию фактических данных по величине тяги несущего винта на режимах висения вертолета, сравнивают с помощью бортового вычислителя полученные статистические данные по тяге несущего винта с исходными величинами и, в случае снижения величины тяги несущего винта от исходной на заданную величину, формируют с помощью бортового вычислителя сигнал на монитор о необходимости регулировки параметров двигателей до значений, обеспечивающих отклонение тяги несущего винта в пределах 0,5% от исходной величины. Регулирование параметров двигателя осуществляется или в автоматическом режиме, или обслуживающим персоналом на земле. Достигается повышение эффективности применения вертолета.

Недостатком данного способа эксплуатации является невозможность по полученным результатам определить уровень усталостных напряжений на валу несущего винта, потому что усталостные напряжения на нем определяются напряжениями изгиба. Также недостатком является необходимость установки на вертолетах датчиков и электронных блоков, затраты времени для вторичной обработки данных в наземных условиях. Также недостатком является необходимость предварительно перед началом эксплуатации вертолета осуществляют сбор исходных данных по характеристикам двигателей силовой установки в соответствии с формулярами и сбор исходных данных по величине тяги несущего винта при контрольных висениях вертолета.

В качестве ближайшего аналога выбран патент США №2011112806, опубл. 2011.05.12, МПК G06F 17/10. Изобретение относится к способу предоставления информации о критическом состоянии компонента винтокрылого летательного аппарата, включающего в себя, по меньшей мере, один двигатель, приводящий в движение несущий винт, включающий в себя обтекатель, вал и множество лопастей. Датчик измерения изгибающих и циклических нагрузок, действующих на несущий винт летательного аппарата, включает в себя вычислительный блок, предназначенный для вычисления (а) текущей температуры подшипника узла несущего винта с использованием первой расчетной модели, (б) прогнозирование температуры подшипника с использованием первой расчетной модели и (в) приложение нагрузки на выбранный компонент узла несущего винта с использованием второй расчетной модели, первая и вторая расчетные модели выполнены с возможностью расчета, соответственно, прогнозируемого и текущего значения температуры подшипника и нагрузки, действующей на выбранный компонент на основе контрольных параметров полета; и блок отображения, предназначенный для отображения на единой шкале подвижного индикатора, который приводится в движение под воздействием наибольшего значения проецируемой температуры подшипника и нагрузки, действующей на выбранный компонент. Дисплей отображает другой подвижный индикатор, приводимый в действие текущей температурой подшипника.

Недостатком прототипа является необходимость установки внештатных датчиков, что представляет собой определенные трудности, поскольку конструкция серийных вертолетов не приспособлена к установке внештатных датчиков, кроме того, в процедурах технического обслуживания и полевого ремонта внештатные датчики не интегрированы в полной мере с остальным авиационным оборудованием, требуют дополнительных руководств и справочников по технической эксплуатации и дополнительно обученных специалистов.

Задачей заявляемого технического решения является создание способа контроля изгибных напряжений на валу несущего винта в течение всего времени выполнения полета (от взлета до посадки) для выявления усталостных повреждений вала и для предотвращения аварийных ситуаций.

Технический результат - определение остаточного ресурса и контроль допустимого уровня нагрузок.

Технический результат достигается тем, что способ определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта включает измерение в течение всего времени полета штатными средствами контроля летно-технических характеристик вертолета, расчет с помощью математической модели нагрузок на вал несущего винта и сигнализирование в случае их превышения, из числа измеренных летно-технических характеристик выбирают и систематизируют значимые параметры, оказывающие непосредственное влияние на уровень нагруженности вала несущего винта, определяют аппроксимирующие функции значимых параметров с целью определения итоговой функции зависимости напряжений в вале несущего винта σ(t) от выбранных параметров летно-технических характеристик, к итоговой функции добавляются абсолютные значения скоростей изменения углов поворота тарелки автомата перекоса в продольном и поперечном направлении:

Предлагаемый способ позволяет оценивать уровень нагруженности вала несущего винта в любой момент его летной эксплуатации. Основанный на использовании штатных средств контроля параметров полета вертолета, он позволяет определять уровень изгибных напряжений в течение всего времени выполнения полета, использовать его для регистрации полетных ограничений и сообщения экипажу о превышении допустимого уровня нагрузок, а также определения остаточного ресурса.

В заявляемом изобретении сделан анализ условий обоснованного установления предельных значений для особо ответственных диагностических признаков на примере индикации фактических действующих в полете изгибных напряжений вала несущего винта вертолета одновинтовой схемы, в частности для вертолетов АНСАТ.

Сущность изобретения заключается в том, что из числа контролируемых в полете параметров выбирают и систематизируют те параметры, которые оказывают непосредственное влияние на уровень нагруженности вала НВ. Определяются аппроксимирующие функции значимых параметров с целью определения итоговой функции зависимости напряжений в вале НВ от выбранных параметров ЛТХ. К итоговой функции добавляются абсолютные значения скоростей изменения углов поворота тарелки автомата перекоса в продольном и поперечном направлении.

Проводят летный эксперимент. Выбор критичного параметра определяется из текущих значений летно-технических характеристик (ЛТХ) вертолета. Для этого на вал вертолета устанавливается тензодатчик и в реальном полете повременно фиксируются значения напряжений σ ист (t), а также значения траекторных параметров, измеряемых штатными средствами контроля параметров полета вертолета, например: продольный и поперечный угол наклона тарелки автомата перекоса, общий шаг несущего винта, скорость вертолета, угол тангажа вертолета, угол крена вертолета, темп изменения угла наклона тарелки автомата перекоса в продольном и поперечном направлении и др.

Предварительным анализом выбираются параметры ЛТХ, наиболее максимально влияющие на напряжения на валу НВ, для чего строятся графики изменения напряжения на валу в зависимости от значения параметров, регистрируемых штатными средствами контроля, и находят и оценивают коэффициенты корреляции с целью фильтрации параметров ЛТХ.

В качестве значимых выбирают траекторные параметры ЛТХ с коэффициентом корреляции более 0,2.

Строятся аппроксимирующие кривые (зависимости напряжений на валу несущего винта от выбранных параметров ЛТХ) и составляется система уравнений с целью определения аппроксимации функции для изгибного напряжения по времени σ расч (t):

и находятся соответствующие весовые коэффициенты A1, А2, A3, …, An.

Коэффициенты A1, А2, A3 находят полиномиальной аппроксимацией по методу наименьших квадратов (для конкретного вертолета с конкретными ЛТХ).

Окончательная формула принимает вид:

где Dпрод - угол наклона тарелки автомата перекоса в продольном направлении,

Dпоп - угол наклона тарелки автомата перекоса в поперечном направлении,

Dош - общий шаг несущего винта,

Х n - иные значимые летно-технические параметры,

- абсолютное значение скорости изменения угла поворота тарелки автомата перекоса в продольном направлении,

- абсолютное значение скорости изменения угла поворота тарелки автомата перекоса в поперечном направлении.

Расчет изгибного напряжения вала несущего винта вертолета осуществляется в режиме реального времени в течение всего времени полета в вычислительном блоке бортового компьютера на основании заложенной программы. При превышении безопасного уровня напряжений осуществляется сигнализирование летчику и начинается вычисление израсходованного ресурса в часах по формуле:

где Пр – повреждаемость, вносимая уровнем напряжений, превышающим безопасный;

Пт.п. - повреждаемость за час типового полета, принятая при расчете ресурса для нормальных условий эксплуатации.

Повреждаемость, вносимая уровнем напряжений, превышающим безопасный Пр, определяется по следующей методике:

Для каждого уровня нагружения, превышающего безопасный, с использованием кривой усталости (кривая принимается по результатам испытаний на усталость вала несущего винта) определяется соответствующее количество циклов до разрушения (Ni);

Повреждаемость, вносимая уровнем напряжений, превышающим безопасный Пр, определяется как отношение количества циклов на этом уровне к количеству циклов до разрушения (Ni).

Таким образом, после каждого полета вычисляется израсходованный ресурс вала несущего винта. В случае, если превышений предельного уровня нагружения не было, то израсходованный ресурс вала несущего винта равен фактическому времени полета, в случае, если были зафиксированы превышения безопасного уровня нагружения, то к фактическому времени полета добавляется время, определенное по описанной выше методике.

Поскольку всегда имеет место процедура измерения, необходимая для получения достоверной информации для каждого диагностического признака, то, соответственно, также требуется учет неизбежных погрешностей измерения для каждого диагностического признака. Тогда принятие решения о превышении или о непревышении его предельных значений должно приниматься также с учетом верхнего (или нижнего) допуска области предельных состояний.

Должна быть установлена некоторая предельная величина σ ПР, превышение которой влечет за собой быстрое исчерпание усталостной долговечности вала несущего винта и возможное его разрушение в последующем времени полета. Поскольку данный параметр, или диагностический признак, является особо ответственным, то необходима индикация в кабине пилотов его текущего значения. Обозначим как - допустимое по индикатору значение текущего измеренного значения σф.

Фактическое текущее значение σф можно представить в виде суммы:

где mσ - математическое ожидание изгибных напряжений в наиболее нагруженном сечении вала несущего винта на рассматриваемом режиме полета, Δσ - отклонение фактического значения σф от его математического ожидания.

Описание осуществления изобретения

Практическое определение параметров, влияющих на уровень нагруженности вала.

1. Проводился летный эксперимент на вертолете с одновинтовой схемой АНСАТ, в ходе которого измерялись значения изгибных нагрузок в конкретный отрезок времени с помощью тензодатчика, установленного на валу несущего винта. Экспериментальная зависимость σ ист (t) приведена на фиг. 1 (кривая 1). Данная зависимость получена на типовом режиме полета, включающего следующие режимы:

а) Висение (в том числе развороты на висении)

б) Разгон

в) Малые скорости у земли

г) Набор высоты

д) Горизонтальный полет с разными скоростями

е) Виражи

ж) Моторное планирование

з) Торможение

В течение полета с помощью штатных средств контроля вертолета были измерены во времени следующие траекторные параметры.

1. Скорость, единица измерения км/ч.

Измерялась прибором «Указатель скорости УСВИЦ-350 с цифровым выходом». Погрешность выдачи цифрового сигнала текущей приборной скорости в нормальных климатических условиях при номинальных значениях входных сигналов не превышает ±6 км/ч.

2. Высота, единица измерения м.

Измерялась приборами:

- «Указатель высоты ВМЦ-10» - высотомер механический с цифровым выходом. Погрешность выдачи цифрового сигнала относительной высоты полета, вариация показаний при установленном на счетчике атмосферном давлении 760 мм рт.ст. (1013 гПа) в нормальных климатических условиях в зависимости от высоты составляет: от ±10 м (на высоте Ом) до ±30 м (на высоте 6000 м);

- «Радиовысотомер А-053-05.02» - бортовая радиолокационная станция с непрерывным излучением частотно-модулированных радиоволн. Погрешность измерения высоты при полетах над любой гладкой поверхностью (типа ВПП) с горизонтальной скоростью до 120 м/с и вертикальной скоростью не более 8 м/с при углах крена и тангажа до ±20° в диапазоне высот от 0 до 1500 м в 95% измерений высоты, м: по цифровому выходу 0,45 или ±0,02Н (что больше).

3. Угол крена и угол тангажа вертолета, градус.

Измеряется прибором «Авиагоризонт АГБ-96Д» - выдает сигналы крена и тангажа вертолета. Погрешность авиагоризонта по крену и тангажу на вибрирующем основании - не более ±2,5°.

4. Положение органов управления, единица измерения градусы.

Измеряется прибором «Потенциометрические двухканальные датчики положения органов управления ДП-М». Погрешность измерения ±30".

5. Положение выходных звеньев (штоков) рулевых приводов (углы наклона тарелки автомата перекоса в продольном и поперечном направлении) РП-14, мм.

Измеряется прибором «Потенциометрические датчики МУ-615А серии 1». Погрешность измерения углов в нормальных условиях: ±2% от номинального диапазона измерения.

6. Угловые скорости, рад/с.

Измеряется прибором «Блок датчиков первичной информации БДПИ-09» - выдает информацию о проекциях векторов угловой скорости и линейного ускорения.

На фигурах 2-7 приведены зависимости напряжений на валу несущего винта от измеренных параметров. Перечень приведенных параметров не ограничен приведенными параметрами и зависит от конкретного вертолета.

В ходе эксперимента были измерены следующие параметры во времени:

σ(t) - величина изгибного напряжения по времени, измеренная тензометрическим датчиком на валу,

Dпрод(t) - угол наклона тарелки автомата перекоса в продольном направлении,

Dпоп(t) - угол наклона тарелки автомата перекоса в поперечном направлении,

Dош(t) - общий шаг несущего винта,

V(t) - скорость вертолета,

f т (t) - угол тангажа вертолета,

f к (t) - угол крена вертолета.

Определены коэффициенты корреляции для каждого параметра

Все параметры (коэффициент корреляции >0,2) выбраны значимыми и для них построены аппроксимирующие кривые и составлены уравнения для каждого момента времени и для каждого параметра:

Согласно выбранным значимым параметрам окончательная формула принимает вид:

Коэффициенты A1, А2, A3, А4, А5, А6 найдены путем решения матричного уравнения:

Расчетные значения изгибного напряжения приведены на фигуре 1 (кривая σ расч (t)).

Предлагаемый способ позволяет оценивать уровень нагруженности вала НВ в любой момент его летной эксплуатации. Основанный на использовании штатных средств контроля параметров полета вертолета, он позволяет определять уровень изгибных напряжений в течение всего времени выполнения полета, использовать его для регистрации полетных ограничений и сообщения экипажу о превышении допустимого уровня нагрузок, а также определения остаточного ресурса.

1. Способ определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта, включающий измерение в течение всего времени полета штатными средствами контроля летно-технических характеристик вертолета, расчет с помощью математической модели нагрузок на вал несущего винта и сигнализирование в случае их превышения, отличающийся тем, что из числа измеренных летно-технических характеристик выбирают и систематизируют значимые параметры, оказывающие непосредственное влияние на уровень нагруженности вала несущего винта, определяют аппроксимирующие функции значимых параметров с целью определения итоговой функции зависимости напряжений в вале несущего винта σ(t) от выбранных параметров летно-технических характеристик, к итоговой функции добавляются абсолютные значения скоростей изменения углов поворота тарелки автомата перекоса в продольном и поперечном направлении:

2. Способ определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта по п. 1, отличающийся тем, что для определения значимости параметров летно-технических характеристик строят зависимости напряжений на валу несущего винта от выбранных параметров и рассчитывают и оценивают коэффициенты корреляции.

3. Способ определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта по п. 2, отличающийся тем, что значимость параметров определяется по величине коэффициента корреляции >0,2.

Похожие патенты:

Изобретение относится к области машиностроения, преимущественно к авиадвигателестроению, а именно к способу определения физико-механического состояния рабочих лопаток турбины высокого давления (ТВД), в частности напряженного состояния лопатки.

Изобретение относится к техническому диагностированию гидрофицированных силовых передач самоходных машин. Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач осуществляется без разрыва потока мощности в передачах во время их переключения.

Изобретение относится к измерительной технике и может быть использовано при эксплуатации электродвигателей и другой техники с подшипниковыми узлами для определения текущего состояния подшипников и прогнозирования ресурса по завершении определенного времени с начала эксплуатации.

Изобретение относится к измерительной технике и может быть использовано для определения осевой нагрузки на шарикоподшипниковые опоры роторов, а также для определения и контроля собственных частот колебаний роторов небольших механизмов и приборов.

Изобретения относятся к измерительной технике, в частности к средствам и методам измерения непроницаемости просвета поршневого кольца. При реализации способа открытое поршневое кольцо зажимают в направлении периферии посредством вспомогательного приспособления с максимальным закрытием стыка и определяют непроницаемость просвета посредством оптических средств.

Размер: px

Начинать показ со страницы:

Транскрипт

1 УДК: В.А. Грайворонский, А.Г. Гребеников И.Н. Шепель, Т.А. Гамануха Приближенный метод расчета нормальных аэродинамических усилий распределенных по лопасти несущего винта вертолета Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ» На основе гипотезы косых сечений рассмотрены вопросы определения усилий распределенных по лопасти несущего винта с учетом сжимаемости и нестационарности. Ключевые слова: лопасть, несущий винт, вертолет. Особенностью обтекания несущих винтов в горизонтальном полете является наличие переменных скоростей, углов скольжения и углов атаки элементов лопасти несущего винта (НВ). Применение схемы несущей линии, а также разложение обтекания на поперечное и продольное в целях использования гипотезы плоских сечений возможно для скорости горизонтального полета, не превышающей 8 м/с. На рис. изображен спектр обтекания лопасти, находящейся в задней части диска при µ =,46, из которого следует, что углы скольжения по лопасти значительно изменяются . Рис.. Спектр обтекания лопасти несущего винта Характер обтекания лопасти винта по радиусу и азимуту при малой скорости полета показан на рис., а, при большой на рис., б. Углы скольжения сечений лопасти отличаются более чем в,5 раза. а Рис.. Поля скоростей обтекания лопасти несущего винта б 78

2 В табл. представлены значения углов скольжения потока у лопасти на относительных радиусах,5 и,9 для различных скоростей полета на азимутах и 8 . Таблица. Углы скольжения потока на относительных радиусах V, км/ч r =,5 r =, С ростом скорости горизонтального полета возрастает и влияние зоны обратного обтекания, где также существенно скольжение. Если до скоростей µ =, 4 зона обратного обтекания не вносит существенного изменения в величину сил и моментов, то при больших скоростях ее влияние необходимо учитывать. Наибольшая величина радиуса зоны обратного обтекания без учета o управления лопастью соответствует азимуту ψ = 7 и равна r µ. Таким образом, сечения лопасти обтекаются постоянно меняющимся по направлению и величине потоком. Это обстоятельство приводит к необходимости рассчитывать характеристики сечений лопасти по суммарной скорости на соответствующем радиусе с учетом сжимаемости и не стационарности. Суммарная скорость в сечении определяется вращением лопасти, движением вертолета, маховым движением лопасти, индуктивным потоком на винте, а также продольным центробежным движением вдоль лопасти. Центробежный поток возникает из-за пограничного слоя. Как показали численные расчеты , этот поток не оказывает существенного влияния на обтекание лопасти. На рис. 3 показаны эпюры ламинарного и турбулентного пограничных слоев. При турбулентном пограничном слое радиальное течение практически отсутствует из-за значительных касательных усилий. Координата х определяет точку по хорде в связанной системе координат. Например, при значении х =,5 м и ω в = 5 рад/с наибольшая скорость от центробежной силы при ламинарном режиме Vr =,4 м/с, а при турбулентном, что более вероятно - в десять раз меньше, т.е. это течение можно не учитывать. Рис. 3. Распределение радиальных скоростей в пограничном слое: турбулентный ПС, ламинарный ПС 79

3 Причиной радиального течения в пограничном слое может быть и распределение давления вдоль лопасти . Это может привести к перераспределению аэродинамической нагрузки для тяжело нагруженных винтов. Базовой плоскостью для определения кинематических параметров является конструктивная плоскость вращения винта (рис. 4). Рис. 4. Кинематика обтекания лопасти в конструктивной плоскости вращения винта Кинематическая схема скоростей в поперечном сечении лопасти показана на рис. 5. Рис. 5. Треугольник скоростей сечения лопасти Относительная скорость в конструктивной плоскости вращения на радиусе rопределяется выражением W W (µ + υ) + r + (µ + υ) r sin(ψ) =. () Вертикальная составляющая относительной скорости V y = λ r β. () Тогда суммарная относительная скорость в сечении (µ + υ) + r + (µ + υ) r sin(ψ) + λ + r β λ β = r В этих выражениях приняты известные относительные параметры : µ = V cos(α); λ = V sin(α) + υ ; β = a sin(ψ) b cos(ψ). в в y. (3) В горизонтальном полете относительные индуктивные скорости (4) 8

4 υ > ; υ <. Определение этих скоростей может проводиться численными y методами, например методом дискретных вихрей, либо на основании дисковых теорий. Индуктивные скорости изменяются по диску НВ. Наиболее простой закономерностью является II гипотеза Глауэрта, согласно которой υ y = υ i ср (+ k cos ψ); где k коэффициент, учитывающий влияние относительного радиуса; 4 µ r k = 3 ; (5) µ, + λ υ i ср средняя по диску индуктивная скорость. Значения υ i ср и υ можно определить по дисковой теории В.И. Шайдакова . Для больших скоростей полета среднюю по диску индуктивную скорость можно определить по формуле CТ υi =, (6) ср 4 ξ µ где ξ коэффициент, учитывающий перетекание: ξ =,9,94. Параметры a,b,α в определяют в процессе аэродинамического расчета . Угол отклонения от оси х набегающего на сечение потока можно определить в зависимости от ψ согласно табл.. Угол атаки в текущем сечении это угол между хордой сечения лопасти и вектором скорости на бесконечности: () λ r β α e = ϕe cos δ + arctg (µ + υ) + r + (µ + υ) r sin(ψ). (7) Угол установки сечения ϕ e зависит в общем случае от крутки лопасти и управления АП и РВ. Его можно определить по конструктивным и балансировочным параметрам: где ϕσ ϕe = ϕ,7 + B sin r k, D коэффициенты РВ и АП; (7, r) k a + k a cos(ψ) D δ (ψ) δ балансировочный угол отклонения АП в горизонтальном полете. B, (8) Расчет усилий на лопасти с учетом пространственного характера обтекания будем проводить по гипотезе "косых" сечений, т.е. несущим профилем лопасти считается сечение по местной скорости подходящего к лопасти потока. Определение геометрии таких сечений весьма затруднительно из-за крутки, 8

5 деформации лопасти и особенно на участках изменения профиля и в зоне обратного обтекания. Сечения лопасти определяют по местным линиям тока, которые считаются на участке лопасти прямолинейными и отклонены от нормального сечения в ту или другую сторону на угол δ (табл.). Изменение χ и δ в зависимости от азимута ψ, рад Выражение для χ, рад δ, рад r cos(ψ) arctg µ + υ + r sin(ψ), χ < Направление потока на лопасти К концу ψ χ лопасти Таблица r cos(ψ) arctg + + µ υ r sin(ψ), χ < ψ + χ К комлю лопасти 3 r cos(ψ) arctg + + µ υ r sin(ψ), ψ + χ К комлю лопасти <χ< r cos(ψ) 3 arctg + + µ υ r sin(ψ), 5 К концу ψ χ лопасти <χ< При значении δ < профиль в косом сечении обтекается с носка, а при δ > с хвостовой части. Для современных вертолетов изменения скоростей и угла атаки в сечениях по времени достигают больших величин: V & ma > ±м/ c, & α ma > ± o / c. Это приводит к нестационарному изменению всех аэродинамических параметров; возникает затягивание срыва. Движение вертолета существенно отличается от прогнозируемого по стационарным характеристикам. Аэродинамические коэффициенты в фиксируемый момент времени будут определяться не только значениями скорости и угла атаки в данный момент времени, но и процессом изменения их в предшествующее время. Естественно, более отдаленные моменты времени будут влиять слабее на этот процесс. Оказывает значительное влияние и характер зависимостей α& = f (t) и V & = f (t). Достаточно достоверных 8

6 зависимостей по этому вопросу нет, но есть некоторые экспериментальные зависимости, позволяющие учесть это явление. В частности, в работе изложен метод аппроксимации экспериментальных данных по трем параметрам, определяющим характер изменения угла атаки, что позволяет перевести полученные результаты на другие условия. Данные этой работы были использованы для определения коэффициента нормальной силы профиля в нормальных сечениях и сечениях по линии тока. Кроме того, проводили коррекцию коэффициента нормальной силы в зависимости от относительной толщины сечения и сжимаемости. В процессе предварительного расчета определяли кинематические параметры в сечениях лопасти согласно приведенным выше зависимостям. В качестве исходных геометрических, кинематических и балансировочных приняты параметры вертолета Ми-: C =,; ω =5,8 /с; а =4,7 ; а =5,7 ; в =, ; T V =,35; D =,7; k =,4; ϕ 7 =4. На рис. 6 показаны кинематические параметры по азимуту W и W П в седьмом сечении, а также углы атаки α и α и углы условно невозмущенного потока δ и χ. w w П α eп.5 α e 6 e HB eп 3 8 w α e 8 w П α eп Ψ Рис. 6. Кинематические параметры сечения лопасти в сечении «7» по гипотезе косых сечений; индексом «п» помечены параметры по гипотезе нормальных сечений Суммарные скорости в сечении W и W П практически изменяется по I гармонике. Естественно, на всех азимутах суммарная скорость W больше, чем скорость W П, а угол атаки по линии тока меньше угла атаки в нормальном сечении. Углы ориентации суммарного потока δ и χ, которые более чувствительны к маховому движению лопастей, существенно отличаются от простого гармонического изменения. На рис. 7 показано изменение углового и линейного ускорений в сечении «7». Для конкретного случая расчета α& практически изменяется в диапазоне 83

7 + - /с. Это изменение близко к I гармонике. Линейное ускорение W & в диапазоне + - м/с. Указанные обстоятельства значительного изменения как угла атаки, так и суммарной скорости являются причиной не стационарности аэродинамических характеристик. К сожалению, раздельное влияние этих двух факторов на аэродинамические характеристики не исследовано. На рис. 7 показано изменение поточной нормальной нагрузки по гипотезе косых сечений и нормальных 5 ẇ п α. П. ẇ α п Рис. 7. Изменение нормальной силы по азимуту в сечении «7»; индексом «п» помечены параметры по гипотезе W & и α& угловое и линейное ускорения Ψ Эти данные были получены с учетом не стационарности по углу атаки. Нагрузка по гипотезе косых сечений несколько выше, чем по гипотезе нормальных сечений, особенно в зоне отступающей лопасти п ψ= ψ=3 ψ= п ψ= Рис. 8. Изменение погонной нагрузки по радиусу для азимута ψ =3 и 84

8 Изменение погонной нагрузки по радиусу для азимута ψ =3 и показано на риc. 8. Для азимута ψ =3 нормальная нагрузка по обоим вариантам расчета практически не отличается. На азимуте ψ = нормальная нагрузка по гипотезе «косых» сечений выше, чем по гипотезе нормальных сечений. Это связано с одновременным влиянием на погонную нагрузку изменения скорости и угла атаки. Список литературы. Теория несущего винта. [Текст] Под ред. А.К. Мартынова, М.: Машиностроение, 973. с.. Михеев С.В., Аникин В.Х., Свириденко Ю.Н., Коломенский Д.С. Направление развития методов моделирования аэродинамических характеристик несущих винтов. [Текст] // Труды VI форума Рос ВО. М., 4. 5 с 3. Шайдаков, В.И. Дисковая вихревая теория несущего винта с постоянной нагрузкой по диску. [Текст] / В.И. Шайдаков //Проектирование вертолетов: тех. сб. науч. тр. // МАИ, Вып. 38, М., с 4. ЦАГИ основные этапы научной деятельности, / М., Физматлит, с. 5. Баскин, В.Э. Нормальная сила сечения лопасти несущего винта при динамическом срыве. [Текст] / В.Э. Баскин, В.Р. Липатов // Труды ЦАГИ, вып. 865, с 6. Грайворонский, В.А. Динамика полета вертолета. [Текст]: Учеб. Пособие / В.А. Грайворонский, В.А. Захаренко, В.В. Чмовж. Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковського ХАИ, 4. 8 с 7. Fogarty, L.E. The laminar boundary layer on a rotating blade. / J. aeronaut Sei., vol. 8, no. 3, 95. Поступила в редакцию Наближений метод розрахунку нормальних аеродинамічних зусиль розподілених, по лопаті несучого гвинта вертоліт На основі гіпотези косих перетинів розглянуті питання визначення зусиль розподілених по лопаті несучого гвинта з урахуванням стискання і не стаціонарності Ключові слова: лопать, несучий гвинт, вертоліт. An approimate method of calculation of normal aerodynemic effort distributed over the rotor blades of the helicopter On the basis of the hypothesis of oblique cross-sections are considered questions of definition effort distributed over the rotor blades with the compressibility and unsteadiness. Keywords: blade, rotor, helicopter. 85


Труды МАИ. Выпуск 92 УДК 629.735.45 www.mai.ru/science/trud/ Расчетные исследования характеристик рулевых винтов с различными значениями заполнения на режиме висения при вращении вертолета Анимица В.А.,

УДК 69.7.07 В.П. Зинченко Влияние стреловидной законцовки лопасти на аэродинамические характеристики несущего винта при больших скоростях полета вертолета Научно-производственное объединение «АВИА» На

УДК 568 ВВ Тюрев, ВА Тараненко Исследование особенностей обтекания профиля при нестационарном движении Национальный аэрокосмический университет им НЕ Жуковского «ХАИ» При современном развитии авиатранспортных

УДК 69.735.45.015.3 (075.8) В.П.Зинченко Расчет потерь тяги от обдувки планера вертолета несущим винтом на режиме висения Научно-производственное объединение «Авиа» Режимы висения и вертикального подъёма

Электронный журнал «Труды МАИ». Выпуск 45 www.mai.ru/science/trudy/ УДК 629.735.33 Численное моделирование режимов «вихревое кольцо» несущего винта вертолета. Макеев П.В., Шомов А.И. Аннотация. При помощи

Труды МАИ. Выпуск 87 УДК 629.735.33 www.mai.ru/science/trudy/ Расчетные исследования виброперегрузок несущего винта, вызванных пульсацией силы тяги, на базе вихревой теории Анимица В.А.*, Борисов Е.А.*,

УЧЕНЫЕ ЗАПИСКИ ЦАГИ Том XXXX 2009 1 УДК 629.735.015.3.035.62 УДК ВЛИЯНИЕ ДАЛЬНЕГО ВИХРЕВОГО СЛЕДА ОТ НЕСУЩЕГО ВИНТА НА ХАРАКТЕРИСТИКИ БЛИЖНЕГО ПОЛЯ СКОРОСТЕЙ Р. М. МИРГАЗОВ, В. М. ЩЕГЛОВА Кратко изложен

УДК 69.735.0168.519.673 (045) А.И. Жданов, Е.П. Ударцев, А.И. Швец, А.Г. Щербонос Моделирование динамики полета самолета в нестационарном движении Національний авіаційний університет Вступление Определение

Центральный аэрогидродинамический институт имени проф. Н.Е. Жуковского О ВЛИЯНИИ БАЛАНСИРОВКИ НА АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕСУЩЕГО ВИНТА Б.С. Крицкий, Р.М. Миргазов Шестая Всероссийская конференция

Тема 3. Особенности аэродинамики воздушных винтов Воздушный винт представляет собой лопастный движитель, приводимый во вращение двигателем, и предназначен для получения тяги. Он применяется на самолетах

Электронный журнал «Труды МАИ». Выпуск 38 www.mai.ru/science/trudy/ УДК 629.735.33 Программный комплекс для расчета аэродинамических характеристик несущих и рулевых винтов вертолетов на базе нелинейной

Электронный журнал «Труды МАИ». Выпуск 69 www.mai.ru/science/trudy/ УДК 629.735.33 Численное моделирование интерференции между несущим и рулевым винтами вертолета на режиме горизонтального полета со скольжением

У Ч Е Н Ы Е З А П И С К И Ц А Г И Т о м X L I I УДК 53.56. ТЕЧЕНИЕ В ОКРЕСТНОСТИ ТОЧКИ ИЗЛОМА ПЕРЕДНЕЙ КРОМКИ ТОНКОГО КРЫЛА НА РЕЖИМЕ СИЛЬНОГО ВЗАИМОДЕЙСТВИЯ Г. Н. ДУДИН А. В. ЛЕДОВСКИЙ Исследовано течение

Труды МАИ. Выпуск 95 http://trudymai.ru/ УДК 629.735.45.015 Анализ особенностей работы несущего винта с отрицательным выносом горизонтальных шарниров Борисов Е.А.*, Леонтьев В.А.**, Новак В.Н.*** Центральный

УДК 629.7.016.7 П.И. Моцарь, В.А. Удовенко Расчет углов атаки сечений лопасти и аэродинамических характеристик винта, зная распределение интенсивности вихревого слоя, в рамках метода дискретных вихрей

15.1.2. КОНВЕКТИВНАЯ ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ДВИЖЕНИИ ТЕКУЧЕЙ СРЕДЫ В ТРУБАХ И КАНАЛАХ В этом случае безразмерный коэффициент теплоотдачи критерий (число) Нуссельта зависит от критерия Грасгофа (при

2014 НАУЧНЫЙ ВЕСТНИК МГТУ ГА 200 УДК 534.83:629.735.45 ИССЛЕДОВАНИЕ ШУМА ВЫТЕСНЕНИЯ ОТ НЕСУЩЕГО ВИНТА ВЕРТОЛЕТА В ДАЛЬНЕМ ПОЛЕ В.А. ГОЛОВКИН, Б.С. КРИЦКИЙ, Р.М. МИРГАЗОВ Приведены результаты исследования

8 УДК 69.7.06: 69.7.018 Е.Д. Ковалев, канд. техн. наук, П.И. Моцар, В.А. Удовенко, канд. техн. наук МАТЕМАТИЧЕСКИЕ МОДЕЛИ ИМИТАЦИИ ДИНАМИКИ ПОЛЕТА ВЕРТОЛЕТА НА КОМПЛЕКСНОМ ТРЕНАЖЕРЕ НА ОСОБЫХ И КРИТИЧЕСКИХ

Электронный журнал «Труды МАИ» Выпуск 55 wwwrusenetrud УДК 69735335 Соотношения для вращательных производных от коэффициентов моментов крена и рысканья крыла МА Головкин Аннотация С использованием векторных

Открытые информационные и компьютерные интегрированные технологии 66, 4 УДК 69.75.45, 5.5(75.8) А. Г. Дибир, А. А. Кирпикин, Н. И. Пекельный Влияние упругости торсионного крепления на дифференциальное

У Ч Е Н Ы Е З А П И С К И Ц А Г И Т о м X L I V 2 0 1 3 5 УДК 629.735.45.015.4 ИССЛЕДОВАНИЕ ПОСАДОЧНЫХ ХАРАКТЕРИСТИК ВЕРТОЛЕТА НА ПОЛОЗКОВОМ ШАССИ ПО РЕЗУЛЬТАТАМ ЛЕТНОГО ЭКСПЕРИМЕНТА С. А. АЛИМОВ, С. А.

Гидромеханика Модуль 1 1. Свойства жидкости. 2. Внешняя и внутренняя задача гидромеханики. 3. Массовые и поверхностные силы. 4. Потенциал массовых сил. 5. Главный вектор и главный момент гидродинамических

ТРУДЫ МФТИ. 2014. Том 6, 1 А. М. Гайфуллин и др. 101 УДК 532.527 А. М. Гайфуллин 1,2, Г. Г. Судаков 1, А. В. Воеводин 1, В. Г. Судаков 1,2, Ю. Н. Свириденко 1,2, А. С. Петров 1 1 Центральный аэрогидродинамический

74 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА 11 Т 5, N- 3 УДК 6973533153 МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ НЕСТАЦИОНАРНЫХ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МОДЕЛИ ПАССАЖИРСКОГО САМОЛЕТА ПРИ ПРОДОЛЬНОМ ДВИЖЕНИИ НА БОЛЬШИХ

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум» «УТВЕРЖДАЮ» Зам. директора по УР ГБПОУИО

УД 5394: 62972 Об усталостной прочности лопасти несущего винта вертолета при действии ветровых нагрузок АИ Братухина Статья посвящена рассмотрению вопроса о напряжениях в невращающейся лопасти и втулке

ОГЛАВЛЕНИЕ 3 Предисловие... 11 ГЛАВА I ВВЕДЕНИЕ 1. Предмет аэродинамики. Краткий обзор истории развития аэродинамики... 13 2. Применение аэродинамики в авиационной и ракетной технике... 21 3. Основные

148 ТРУДЫ МФТИ. 2012. Том 4, 2 УДК 533.6.011.35 Т. Ч. Ву 1, В. В. Вышинский 1,2, Н. Т. Данг 3 1 Московский физико-технический институт (государственный университет) 2 Центральный аэрогидродинамический

УДК 533.6.011 Математическое моделирование процессов отрывного и безотрывного обтекания вращающихся летательных аппаратов # 05, май 2012 Тихонова Ю.В. Студент, кафедра «Динамика и управление полетом ракет

ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 28. Т. 49, N- 6 99 УДК 533.692 ПОСТРОЕНИЕ КРЫЛОВЫХ ПРОФИЛЕЙ, БЕЗОТРЫВНО ОБТЕКАЕМЫХ СЖИМАЕМЫМ ПОТОКОМ В ЗАДАННОМ ДИАПАЗОНЕ УГЛОВ АТАКИ О. С. Дунаева, Н. Б. Ильинский

Открытые информационные и компьютерные интегрированные технологии 62, 203 УДК 532.582.2 В.А. Захаренко Обтекание решетки профилей при больших и малых углах атаки Национальный аэрокосмический университет

Открытые информационные и компьютерные интегрированные технологии 44, 009 УДК 533.68 Т.А. Гамануха, А.Г. Гребеников, В.В. Тюрев Метод определения аэродинамических моментов, действующих на самолёт транспортной

Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) Федеральный Университет» ИНСТИТУТ МАТЕМАТИКИ

Известия Челябинского научного центра, вып. 3 (33), 26 ПРОБЛЕМЫ МАШИНОСТРОЕНИЯ УДК 621.9 РАСЧЕТ ТОЛЩИНЫ СРЕЗАЕМОГО СЛОЯ ПРИ ФРЕЗЕРОВАНИИ ПРОСТРАНСТВЕННО СЛОЖНЫХ ПОВЕРХНОСТЕЙ, ИМЕЮЩИХ СТУПЕНЧАТЫЙ ПРИПУСК

ГЕЛИОГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ 2015 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ГЕОФИЗИЧЕСКИХ РИСКОВ УДК 551.508.8 МОДЕЛЬ ПРОГНОЗА ИЗМЕНЕНИЯ ИНТЕНСИВНОСТИ ОБЛЕДЕНЕНИЯ НЕСУЩИХ ВИНТОВ ВЕРТОЛЕТА С УЧЕТОМ ДИНАМИКИ ЕГО ДВИЖЕНИЯ

ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ 3 2014 СЕРЫЯ АГРАРНЫХ НАВУК УДК 621.929:636(476) Механізацыя і энергетыка И. М. ШВЕД 1, А. В. КИТУН 1, В. И. ПЕРЕДНЯ 2, Н. Н. ДЕДОК 1, В. М. КОЛОНЧУК 1 ОПРЕДЕЛЕНИЕ

УДК 622.7 Гравітаційна сепарація В.И. КРИВОЩЕКОВ, канд. техн. наук (Украина, Днепропетровск, Национальный горный университет) ИССЛЕДОВАНИЕ ОБТЕКАНИЯ ЦИЛИНДРОВ ПРИСТЕННЫМ ПОТОКОМ ВЯЗКОЙ ЖИДКОСТИ Проблема

04 НАУЧНЫЙ ВЕСТНИК МГТУ ГА 00 УДК 553.65..3:68.3:69.7.05 РАСЧЕТ ВОЗДУШНОГО ВИНТА БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА С УЧЕТОМ ЧИСЛА РЕЙНОЛЬДСА И СТЕПЕНИ РЕДУКЦИИ О.В. ГЕРАСИМОВ Б.С. КРИЦКИЙ Представлены

УДК533.6.011.32 ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕСТАЦИОНАРНОГО ПОПЕРЕЧНОГО ОБТЕКАНИЯ ЦИЛИНДРА НА ВОЗНИКНОВЕНИЕ БОКОВЫХ СИЛ А.А. Сергеева, Р.В. Сидельников Настоящая работа рассматривает решение нестационарного поперечного

УДК 69.7.36/534.. А.В. ИВАНОВ, кандидат технических наук, М.К. ЛЕОНТЬЕВ, доктор технических наук МАИ, Москва МОДАЛЬНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ СИСТЕМ РОТОРОВ Развиваются методы модального анализа для решения

32 УДК 629.735.33 Д.В. Тиняков ВЛИЯНИЕ КОМПОНОВОЧНЫХ ОГРАНИЧЕНИЙ НА ЧАСТНЫЕ КРИТЕРИИ ЭФФЕКТИВНОСТИ ТРАПЕЦИЕВИДНЫХ КРЫЛЬЕВ САМОЛЕТОВ ТРАНСПОРТНОЙ КАТЕГОРИИ Введение В теории и практике формирования геометрических

Самарский государственный аэрокосмический университет ИССЛЕДОВАНИЕ ПОЛЯРЫ САМОЛЕТА ПРИ ВЕСОВЫХ ИСПЫТАНИЯХ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ Т -3 СГАУ 2003 Самарский государственный аэрокосмический университет В.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ по дисциплине «Нагнетатели ТЭС» Задача Расчет рабочего колеса насоса Рассчитать рабочее колесо насоса для подачи воды плотностью при избыточных давлениях на выходе p н и на входе p

С.В.Валландер ЛЕКЦИИ ПО ГИДРОАЭРОМЕХАНИКЕ Л.: Изд. ЛГУ, 1978, 296 стр. В учебном пособии рассматриваются следующие вопросы: вывод общей системы уравнений гидромеханики, запись этой системы для различных

ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ Меньшенин Александр Аркадьевич Ульяновский государственный университет Задача данного

12 июня 2017 г. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом. Естественная конвекция вызывается разностью удельных весов неравномерно нагретой среды, осуществляется

ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 200. Т. 42, N- 79 УДК 628.23 РАСЧЕТ ПРОЧНОСТИ ЛОПАТКИ КАК ОРТОТРОПНОЙ ПЛАСТИНКИ ЛИНЕЙНО-ПЕРЕМЕННОЙ ТОЛЩИНЫ В. И. Соловьев Новосибирский военный институт, 6307

ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43, N- 1 45 УДК 532.5:533.6 ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ Д. Н. Горелов Омский филиал Института математики СО РАН, 644099 Омск

УДК 621.452.3 Ю. М. Т е м и с, Д. А. Я к у ш е в, Е. А. Т а р а с о в а ОПТИМИЗАЦИЯ ЗАМКОВОГО СОЕДИНЕНИЯ ЛОПАТКИ С ДИСКОМ КОМПРЕССОРА Рассмотрены особенности контактного взаимодействия в замковом соединении

Теория и рабочие процессы 54 УДК 621.515:438 В.П. ГЕРАСИМЕНКО 1, Е.В. ОСИПОВ 2, М.Ю. ШЕЛКОВСКИЙ 2 1 Национальный аэрокосмический университет им. Н.Е. Жуковского ХАИ, Украина 2 Заря Машпроект ГПНПК газотурбостроения,

УДК 629.127.4 В. В. В е л ь т и щ е в УПРОЩЕННОЕ ПРЕДСТАВЛЕНИЕ ГИБКОГО КАБЕЛЯ ПЕРЕМЕННОЙ ДЛИНЫ ДЛЯ МОДЕЛИРОВАНИЯ ДИНАМИКИ ТЕЛЕУПРАВЛЯЕМОГО ПОДВОДНОГО КОМПЛЕКСА Рассмотрены особенности проектирования кабельных

ЗАВИСИМОСТЬ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КРЫЛЬЕВ ПРОСТОЙ ФОРМЫ В ПЛАНЕ ОТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ Спиридонов А.Н., Мельников А.А., Тимаков Е.В., Миназова А.А., Ковалева Я.И. Оренбургский государственный

УЧЕНЫЕ ЗАПИСКИ ЦАГИ Том XXXVI I 6 3 УДК 69.735.45.5.3.35.6 СПЕЦИАЛЬНЫЕ ФУНКЦИИ В ТЕОРИИ ВИНТА В. В. ВОЖДАЕВ, В. С. ВОЖДАЕВ, Е. С. ВОЖДАЕВ Рассмотрена задача применения аналитических решений для построения

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ ПО ОЦЕНКЕ ВЛИЯНИЯ ФОРМЫ ЛОПАСТИ НЕСУЩЕГО ВИНТА ВЕРТОЛЕТА НА УРОВЕНЬ ШУМА В ДАЛЬНЕМ ПОЛЕ В.А. Ивчин (МВЗ им. М.Л. Миля) Рыжов А.А., В.Г. Судаков, (ЦАГИ) Вычислительный эксперимент

Теплофизика и аэромеханика 013 том 0 1 УДК 69.735.33.015.3 Аэродинамические характеристики модели пассажирского самолета при гармонических колебаниях по углу крена и рыскания на больших углах атаки В.И.

Лекция 1 Движение вязкой жидкости. Формула Пуазейля. Ламинарное и турбулентное течения, число Рейнольдса. Движение тел в жидкостях и газах. Подъемная сила крыла самолета, формула Жуковского. Л-1: 8.6-8.7;

90 УДК 69.735.33 В.И. Рябков, д-р техн. наук, Н.Н. Мельник, В.В. Утенкова, канд. техн. наук ОПРЕДЕЛЕНИЕ ПЛОЩАДИ ХВОСТОВОГО ОПЕРЕНИЯ НА ЭТАПЕ ПРЕДВАРИТЕЛЬНОГО ПРОЕКТИРОВАНИЯ С УЧЕТОМ ФОРМЫ КРЫЛА САМОЛЕТА

УЧЕНЫЕ ЗАПИСКИ ЦАГИ Том XXXVI 2005 1 2 УДК 629.782.015.3 БАЛАНСИРОВОЧНОЕ КАЧЕСТВО СИСТЕМЫ КРЫЛО КОРПУС ПРИ БОЛЬШИХ СВЕРХЗВУКОВЫХ СКОРОСТЯХ С. Д. ЖИВОТОВ, В. С. НИКОЛАЕВ Рассмотрена вариационная задача

РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ТЕМАТИЧЕСКОЙ МОДЕЛИ ЛА СХЕМЫ «ЛЕТАЮЩЕЕ КРЫЛО» С ПОМОЩЬЮ ПРОГРАММНОГО КОМПЛЕКСА FLOWVISION С.В. Калашников 1, А.А. Кривощапов 1, А.Л. Митин 1, Н.В.

Лекция 3 Тема 1.2: АЭРОДИНАМИКА КРЫЛА План лекции: 1. Полная аэродинамическая сила. 2. Центр давления профиля крыла. 3. Момент тангажа профиля крыла. 4. Фокус профиля крыла. 5. Формула Жуковского. 6. Обтекание

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ----------- Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования М о с к о в с к и й а в и а ц и

ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2011. Т. 52, N- 3 153 УДК 534.1 ПРОДОЛЬНЫЕ КОЛЕБАНИЯ ПЛАСТИНЫ, ОБТЕКАЕМОЙ ВЯЗКОЙ ЖИДКОСТЬЮ В КАНАЛЕ, ОБУСЛОВЛЕННЫЕ ВЫНУЖДЕННЫМИ ПОПЕРЕЧНЫМИ КОЛЕБАНИЯМИ ПЛАСТИНЫ

Теплофизика и аэромеханика, 2010, том 17, 2 УДК 621.311 Определение аэрогидродинамических характеристик лопастей турбин с вертикальной осью вращения Б.П. Хозяинов, И.Г. Костин Кузбасский государственный

Компьютерная имитационная модель динамики несущего винта вертолета Цель создания имитационной модели отработка алгоритмов управления и методов идентификации динамического состояния винта на различных режимах

МАШИНОСТРОЕНИЕ И МАТЕРИАЛОВЕДЕНИЕ ВЕСТНИК ТОГУ 014 1 (3) УДК 6036: 60331 А Д Ловцов, Н А Иванов, 014 ПРОЕКТИРОВАНИЕ И РАСЧЕТ РАМЫ ЛЕГКОГО КОЛЕСНОГО ВЕЗДЕХОДА С ИСПОЛЬЗОВАНИЕМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им.р.е.алексеева КАФЕДРА АРТИЛЛЕРИЙСКОЕ ВООРУЖЕНИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по дисциплине

114 Аэрогидромеханика ТРУДЫ МФТИ. 2014. Том 6, 2 УДК 532.526.048.3; 532.527; 532.529 В. В. Вышинский 1,2, А. А. Корняков 2, Ю. Н. Свириденко 2 1 Московский физико-технический институт (государственный

29 УДК 629.7.023 А.А. Царицынский ОЦЕНКА ВЛИЯНИЯ ТЕПЛОВОЙ ДЕФОРМАЦИИ КОМПОЗИТНОЙ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ НА ЕЕ ОСВЕЩЕННОСТЬ Солнечные батареи являются основными источниками энергии

Национальный технический университет Украины «Киевский политехнический институт» Кафедра приборов и систем ориентации и навигации Методические указания к лабораторным работам по дисциплине «Навигационные

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего - стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора - нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части - к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5-6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти - 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь - это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь - это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05-0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9-12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.

Мы вчера начали разговор с , в свете споров и обсуждений индийского тендера . Давайте сейчас кратко рассмотрим конкурента, наш Ми-26 и потом сравним оба вертолета.

Проектирование тяжелого винтокрылого летательного аппарата на фирме М.Л. Миля началось с поиска наиболее оптимальных схемы и компоновки. Как и при создании В-12, рассматривались три схемы: одновинтовая и две двухвинтовые — поперечная и продольная. Вначале было решено использовать для новых машин основные агрегаты от Ми-6 и В-12: лопасти — для одновинтового вертолета; лопасти, главные редукторы и бустеры системы управления — для двухвинтовых вертолетов; и от Ми-8: лопасти — для вертолета поперечной схемы с несущими винтами диаметром 23 м. Изучались варианты: одновинтового вертолета с несущим винтом диаметром 35 м; двухвинтового поперечной схемы с винтами диаметром 23 и 35 м; двухвинтового продольной схемы с несущими винтами диаметром 35 м. Однако все они имели одни и те же недостатки — несоответствие параметров техническому заданию, низкую весовую отдачу и большую взлетную массу и, следовательно, низкие летно-технические характеристики.

Аналитики фирмы пришли к выводу, что для решения проблемы недостаточно ограничиться выбором оптимальных параметров — нужны нетрадиционные методы проектирования. При этом необходимо было отказаться как от использования серийных агрегатов, так и от применения общепринятых конструкторских решений.

Проекту тяжелого вертолета присвоили новое обозначение Ми-26 или «изделие 90». Получив положительное заключение от НИИ МАП, коллектив ""МВЗ им. М.Л. Миля"" в августе 1971 г. приступил к разработке аванпроекта, который был закончен через три месяца. К этому времени военный заказчик внес изменения в технические требования к вертолету — увеличил массу максимальной коммерческой нагрузки с 15 до 18 т. Проект был переработан. Вертолет Ми-26, как и его предшественник Ми-6, предназначался для перевозки различных видов военной техники, доставки боеприпасов, продовольствия, снаряжения и других материальных средств, внутрифронтовых перебросок подразделений войск с боевой техникой и вооружением, эвакуации больных и раненых и, в отдельных случаях, для высадки тактических десантов.

Ми-26 представлял собой первый отечественный вертолет нового третьего поколения. Такие винтокрылые аппараты разрабатывались в конце 60-х — начале 70-х гг. многими иностранными фирмами и отличались от своих предшественников улучшенными технико-экономическими показателями, в первую очередь транспортной эффективностью. Но параметры Ми-26 значительно превосходили как отечественные, так и зарубежные показатели вертолетов с грузовой кабиной. Весовая отдача равнялась 50% (вместо 34% у Ми-6), топливная эффективность — 0,62 кг/(т*км). Практически при тех же геометрических размерах, что и у Ми-6, новый аппарат имел вдвое большую полезную нагрузку и значительно лучшие летно-технические характеристики. Увеличение грузоподъемности вдвое почти не отразилось на взлетной массе вертолета.


Научно-технический совет МАП одобрил аванпроект Ми-26 в декабре 1971 г. Проектирование воздушного гиганта предполагало проведение большого объема научно-исследовательских, конструкторских и технологических работ, а также разработку нового оборудования. В короткие сроки предусматривалось создать и построить агрегаты и системы с малыми относительными массами и высокими ресурсами, стендовую базу, провести испытания узлов и агрегатов, изучить свойства конструкций из новых материалов, исследовать новые профили лопастей, аэродинамические характеристики вертолета, устойчивость облегченных лопастей и т.д. В связи с этим ""МВЗ им. М.Л. Миля"" привлек к тесному сотрудничеству ЦАГИ, ЛИИ, ВИАМ, НИАТ, ЦИАМ и другие организации.


В 1972 г. ""МВЗ им. М.Л. Миля"" получил положительные заключения институтов авиационной промышленности и заказчика. Из двух представленных командованию ВВС предложений: Ми-26 и винтокрыла разработки Ухтомского вертолетного завода — военные выбрали милевскую машину. Важным этапом проектирования вертолета стало грамотное составление технического задания. Заказчик первоначально требовал установки на вертолет привода колес, тяжелого вооружения, герметизации грузовой кабины, обеспечения работы двигателей на автотракторных топливах и тому подобных усовершенствований, влекущих за собой значительное утяжеление конструкции. Инженеры нашли разумный компромисс — второстепенные требования были отклонены, а основные — выполнены. В результате была сделана новая компоновка кабины, что позволяло увеличить экипаж с четырех до пяти человек; высота грузовой кабины, в отличие от первоначального проекта, стала одинаковой по всей длине. Доработкам подверглась конструкция и некоторых других частей вертолета.

В 1974 г. облик тяжелого вертолета Ми-26 практически полностью сформировался. Он имел классическую для милевских транспортных вертолетов компоновку: почти все системы силовой установки находились над грузовой кабиной; вынесенные вперед относительно главного редуктора двигатели и расположенная в носовой части кабина экипажа уравновешивали хвостовую часть. При проектировании вертолета впервые расчет обводов фюзеляжа производился методом задания поверхностей кривыми второго порядка, благодаря чему цельнометаллический полумонококовый фюзеляж Ми-26 получил свои характерные удобообтекаемые «дельфинообразные» формы. В его конструкции изначально предусматривалось применять панельную сборку и клеесварные соединения каркаса.

В носовой части фюзеляжа Ми-26, герметичной и оборудованной системой кондиционирования воздуха, находилась просторная и удобная кабина экипажа с местами командира (левого летчика), правого летчика, штурмана и борттехника, а также кабина для четырех человек, сопровождающих груз, и пятого члена экипажа — бортмеханика. По бортам кабин были предусмотрены люки-блистеры для аварийного покидания вертолета, а также бронеплиты. Под полом кабин располагались отсеки навигационного и радиосвязного оборудования, системы жизнеобеспечения и вспомогательная силовая установка - газотурбинный агрегат ТА-8А, обеспечивающий автономный запуск двигателей, электроснабжение погрузочно-разгрузочных механизмов и других систем. Под радиопрозрачным обтекателем в носовой части размещался навигационный радиолокатор.

Центральную часть фюзеляжа занимала вместительная грузовая кабина с задним отсеком, переходящим в хвостовую балку. Длина кабины - 12,1 м (с трапом - 15м), ширина - 3,2 м, а высота изменялась от 2,95 до 3,17 м. Как подтвердили макетные испытания, габариты кабины позволяли перевозить все виды перспективной военной техники массой до 20 т, предназначенной для оснащения мотострелковой дивизии, такие как боевая машина пехоты, самоходная гаубица, бронированная разведывательная машина и т.п. Загрузка техники осуществлялась своим ходом через грузовой люк в хвостовой части фюзеляжа, оснащенный двумя раскрывающимися боковыми створками и опускающимся трапом с подтрапниками. Управление трапом и створками было гидравлическим. Для механизации погрузочно-разгрузочных работ грузовая кабина оборудовалась двумя электролебедками ЛГ-1500 и тельферным устройством, обеспечивающим загрузку, выгрузку и транспортировку вдоль кабины грузов до 5 т, а также затягивание колесной несамоходной техники. Загрузка пассажиров или легких грузов могла производиться, кроме того, через три двери-трапа по бортам фюзеляжа. В десантном варианте Ми-26 перевозил 82 солдата или 68 парашютистов. Специальное оборудование позволяло в течение нескольких часов превращать вертолет в санитарный для транспортировки 60 раненых на носилках и трех сопровождающих медработников. Крупногабаритные грузы массой до 20 т можно было перевозить на внешней подвеске. Ее агрегаты были расположены в конструкции силового пола, благодаря чему не требовался демонтаж системы при перевозке грузов внутри фюзеляжа. Сзади грузового люка фюзеляж плавно переходил в хвостовую балку с профилированной концевой балкой-килем и стабилизатором.

Под грузовым полом фюзеляжа были размещены восемь основных топливных баков общей емкостью 12000 л. В перегоночном варианте в грузовой кабине Ми-26 могли устанавливаться еще четыре дополнительных бака общей емкостью 14800 л. Сверху, над грузовой кабиной, располагались отсеки двигателей, главного редуктора и двух расходных топливных баков. На входах в воздухозаборники двигателей были установлены грибовидные пылезащитные устройства. Расходные топливные баки и двигатели защищались броней.


Для обеспечения намеченных малых значений массы агрегатов и деталей Ми-26, работающих при высоких нагрузках, и необходимого уровня прочности и надежности ОКБ спроектировало, а опытное производство ""МВЗ им. М.Л. Миля"" построило свыше 70 испытательных стендов, в том числе и таких уникальных, как стенд повторно-статических испытаний фюзеляжа и шасси методом «сбрасывания» натурного изделия, замкнутый стенд для испытаний главного редуктора, натурный стенд для испытаний силовых и несущих систем вертолета, стенд предварительных статических испытаний и доводки отсеков фюзеляжа, стенд статических испытаний задней части фюзеляжа. При испытаниях фюзеляжа требуемая прочность достигалась путем последовательного выявления слабых мест и их усиления. В результате Ми-26 превзошел предшественника по объему грузовой кабины и массе полезной нагрузки почти в два раза, а масса фюзеляжа осталась без изменения. Были также созданы стенды для испытаний редукторов и валов хвостовой трансмиссии и отдельных частей главного редуктора, проведены динамические испытания лопастей, комбинированные испытания сочленений втулок и комлевых частей лопастей несущего и рулевого винтов и т.д. Результаты стендовых испытаний незамедлительно учитывались при конструировании агрегатов и систем.

Первостепенной задачей при проектировании Ми-26, как и всех других винтокрылых машин, явилось создание современного несущего винта, обладающего малой массой и высокими аэродинамическими и прочностными характеристиками. При разработке лопастей Ми-26 инженеры ОКБ опирались на богатый опыт проектирования и эксплуатации лопастей со стальным лонжероном и лонжероном из алюминиевого сплава. Небольшой опыт использования стеклопластика в лопастях таких размеров обусловил решение конструкторов не применять его в качестве основного материала для такого большого винта. Стальной лонжерон обеспечивал гораздо больший запас усталостной прочности. Кроме того, к этому времени была разработана уникальная технология производства стальных лонжеронов с проушинами крепления к втулке, выполненными за одно целое с трубой. Лопасть несущего винта тяжелого вертолета была спроектирована на основе стального лонжерона и стеклопластиковой формообразующей конструкции. Между внутренним слоем стеклопластика и наружной стеклопластиковой обшивкой находились стеклопластиковые силовые пояса и легкий пенопласт. Сзади к наружной обшивке приклеивался хвостовой отсек со стеклопластиковой обшивкой и сотовым заполнителем из бумаги «номекс». Каждая лопасть была снабжена пневматической системой обнаружения сквозных микротрещин в лонжероне на стадии их образования. Проведенные совместно с ЦАГИ исследования по оптимизации аэродинамической компоновки лопастей позволили значительно увеличить КПД винта. Экспериментальный комплект из пяти динамически подобных лопастей Ми-26 прошел в 1975 г. предварительные испытания на летающей лаборатории Ми-6.

Впервые в истории вертолетостроения высоко нагруженный несущий винт Ми-26 создавался восьмилопастным. Для того чтобы собрать такой винт, рукава втулки пришлось сделать съемными. Крепление лопастей к втулке было традиционным, посредством трех шарниров, однако в конструкцию осевого шарнира инженеры ""МВЗ им. М.Л.Миля"" ввели торсион, воспринимающий центробежные нагрузки. Ряд шарнирных узлов выполнялся с применением металло-фторопластовых подшипников. Вертикальные шарниры были оснащены пружинно-гидравлическими демпферами. Для снижения массы втулки несущего винта в ее конструкции вместо стали был использован титан. Все это позволило создать восьмилопастной несущий винт с тягой на 30% большей и массой на 2 т меньшей, чем у пятилопастного винта Ми-6. Проведенные в 1977 г. предварительные испытания несущего винта Ми-26 на летающей лаборатории Ми-6 подтвердили правильность выбора параметров, показали высокие аэродинамические характеристики, отсутствие различного рода неустойчивости, низкий уровень вибраций, умеренные напряжения в лонжеронах лопастей и уровень нагрузок в агрегатах несущей системы, не превышающий расчетный.

На вертолете Ми-26 установили рулевой винт с направлением вращения, при котором нижняя лопасть шла навстречу потоку. Цельностеклопластиковые лопасти пятилопастного полужесткого рулевого винта крепились к втулке посредством горизонтального и осевого шарниров с торсионом. Лонжероны его лопастей сначала изготовляли методом ручной укладки ткани, а затем новым методом машинной спиральной намотки. Несмотря на увеличение тяги рулевого винта в два раза, его масса осталась такой же, как у винта Ми-6. Лопасти несущего и рулевого винтов оснащались электротепловой противообледенительной системой. Опытный рулевой винт прошел предварительные испытания на летающей лаборатории Ми-6. Помимо лопастей, стеклопластик использовался в качестве конструкционного материала при изготовлении лонжерона стабилизатора и некоторых несиловых элементов конструкции фюзеляжа.

Одной из сложнейших задач стало создание главного редуктора, который должен был передавать мощность выше 20 тыс.л.с. Для всех милевских вертолетов, за исключением Ми-1, главные редукторы проектировали конструкторы-двигателисты, а ОКБ М.Л.Миля выполняло только эскизную компоновку. При работе над Ми-26 двигательные ОКБ не смогли создать главный редуктор, рассчитанный на заданную руководителями проекта массу Ми-26. Уникальный главный редуктор был разработан на МВЗ собственными силами. Рассматривались две кинематические схемы: традиционная планетарная и принципиально новая многопоточная, ранее в отечественном вертолетостроении не применявшаяся. Исследования показали, что вторая схема позволит получить значительный выигрыш в массе. В результате трехступенчатый главный редуктор ВР-26, превосходящий используемый на Ми-6 редуктор Р-7 по передаваемой мощности почти в два раза, а по выходному крутящему моменту — более чем в полтора раза, получился тяжелее предшественника всего на 8,5%. Передаточное отношение главного редуктора составляло 62,5:1.

Шасси Ми-26 — трехопорное, включающее переднюю и две основные опоры, с двухкамерными амортизационными стойками. Под концевой балкой была установлена убирающаяся хвостовая опора. Для удобства погрузочно-разгрузочных работ основные опоры шасси были оборудованы системой изменения клиренса.

При разработке Ми-26 особое внимание уделялось обеспечению автономности базирования, повышению надежности и простоты эксплуатации. Наличие специальных трапов-капотов, лазов и люков позволяло осуществлять наземное обслуживание вертолета и его агрегатов без применения специальных аэродромных средств.

Проектирование большинства агрегатов и систем конструкторы ОКБ закончили в 1975 г. К этому же времени государственная комиссия приняла окончательный макет вертолета и, в соответствии с постановлением правительства, сборочный цех МВЗ приступил к строительству натурных образцов Ми-26. Новым ответственным ведущим конструктором был назначен В.В.Шутов. Собранный в следующем году первый экземпляр вертолета поступил на повторно-статические и вибрационные испытания. В октябре 1977 г. досрочно закончилась сборка первого летного образца, и в последний день того же месяца тягач выкатил первый Ми-26 из цеха на отработочную площадку. Полтора месяца продолжалась доводка загруженного балластом вертолета и его систем на земле. Установленные на лопастях специальные загрузочные щитки-мулинетки позволяли проверять работу двигателей на всех режимах без привязи вертолета. 14 декабря 1977 г. летчик-испытатель Г.Р.Карапетян впервые оторвал вертолет от земли и осуществил трехминутное опробование систем и агрегатов в воздухе. В феврале следующего года Ми-26 перелетел с заводской площадки на летно-исследовательскую станцию МВЗ, где вскоре был продемонстрирован командованию ВВС СССР.

Вместе с пилотом фирмы Г.Р.Карапетяном в доводке нового вертолета активное участие принимали заводские летчики-испытатели Г.В.Алферов и Ю.Ф.Чапаев. Обязанности ведущего инженера по летным испытаниям исполнял В.А.Изаксон-Елизаров. В середине 1979 г. программа заводских испытаний была успешно выполнена. Принимавшие в них участие представители заказчика дали предварительное положительное заключение о соответствии полученных летно-технических характеристик заданным параметрам. Ростовское вертолетостроительное производственное объединение (РВПО) приступило к освоению серийного производства Ми-26, а первый опытный экземпляр после дефектации и замены некоторых деталей в конце октября того же года был предъявлен заказчику на этап «А» совместных государственных испытаний.

Государственные испытания Ми-26 прошел в рекордно короткие сроки. Это объяснялось большой предварительной научно-исследовательской и экспериментальной работой, проведенной на заводе. На этапе «А» испытатели столкнулись только с одной проблемой - поперечными низкочастотными колебаниями вертолета на некоторых режимах полета.

Недостаток был устранен после изменения задней части обтекателей капотов. Кроме того, конструкторы установили на опытной машине новый комплект лопастей с улучшенной аэродинамической компоновкой. В мае 1979 г. на государственные испытания поступил собранный на опытном производстве МВЗ второй летный экземпляр, на котором проверялась работа системы внешней подвески, десантно-транспортного, такелажно-швартовочного и санитарного оборудования, а также проводилась «примерка» размещения в грузовой кабине различных единиц боевой техники. В апреле 1980 г. второй Ми-26 поступил в НИИ ВВС для проведения заключительного второго этапа «Б» государственных совместных испытаний, а первый аппарат использовался для отработки посадок на режиме авторотации. Режим безмоторного спуска и посадки вызывал некоторые опасения у испытателей из-за относительно малого веса несущего винта и высокой нагрузки на него, однако вертолет продемонстрировал гарантированную возможность посадки с неработающими двигателями.

В ходе этапа «Б» не было каких-либо неприятных сюрпризов, если не считать однажды лопнувшей покрышки. За время госиспытаний оба вертолета совершили полторы сотни полетов и «набрали» свыше 104 летных часов.

Государственные испытания закончились к 26 августа 1980 г. В подписанном заказчиком в октябре того же года заключительном акте утверждалось: «Опытный средний (по военной классификации того времени Ми-26 считался «средним». — Прим. авт.) военно-транспортный вертолет Ми-26 государственные совместные по этапу «Б» испытания выдержал... Летно-технические, боевые и эксплуатационные характеристики в основном соответствуют характеристикам, заданным Постановлением. Статический потолок и максимальная масса нагрузки превосходят заданные ТТТ... Опытный военно-транспортный вертолет Ми-26 и его комплектующие изделия, получившие положительную оценку по результатам испытаний, рекомендовать для запуска в серийное производство и принятия на вооружение Советской Армии». Предпринятая одновременно с советскими вертолетостроителями попытка американских специалистов фирмы «Боинг-Вертол» создать по программе HLH винтокрылый гигант, аналогичный по параметрам Ми-26, закончилась неудачей.

Таким образом, опыт разработки и испытаний вертолета Ми-26 показал, что, во-первых, развитие теории и практики вертолетостроения позволяет раздвинуть пределы, ограничивающие максимальную массу вертолета; во-вторых, чем больше объем работ, выполненных на ранних этапах проектирования, тем успешнее завершающая стадия создания вертолета; и, в-третьих, отработка агрегатов, отдельных элементов и систем на стендах и летающих лабораториях до начала полетов нового вертолета позволяет существенно сократить время на его доводку и летные испытания, а также повысить безопасность. Необходимо отметить, что это был пример самого успешного и плодотворного сотрудничества ""МВЗ им. М.Л.Миля"" с НИИ и руководством ВВС.


В середине 80-х гг. опытный Ми-26 дооборудовали, в соответствии с результатами боевого применения вертолетов в Афганистане, эжекторными выхлопными устройствами, а также системой пассивной защиты от зенитных ракетных комплексов. Первый серийный Ми-26, построенный на Ростовском вертолетном производственном объединении, поднялся в воздух 25 октября 1980 г. Новый вертолет заменил на стапелях Ми-6. Всего в Ростове построено около 310 вертолетов Ми-26.

Поставки вертолетов Ми-26 в отдельные транспортно-боевые полки авиации Сухопутных войск, в полки и эскадрильи погранвойск начались в 1983 г. После нескольких лет доводки они стали надежными и любимыми в войсках машинами. Боевое применение вертолета началось в Афганистане. Входившие в состав 23-го авиаполка погранвойск вертолеты использовались для перевозки грузов, доставки пополнений и эвакуации раненых. Боевых потерь не было. Приняли участие Ми-26 и практически во всех вооруженных конфликтах на Кавказе, в том числе и в двух «чеченских» войнах. В частности, именно на Ми-26 проводилась оперативная доставка войск и их передислокация во время боев в Дагестане в 1999 г. Помимо армейской авиации и авиации погранвойск Ми-26 поступили в то время и в авиачасти МВД России. Везде вертолет показал себя исключительно надежной и часто незаменимой машиной.

Нашли применение Ми-26 при борьбе с пожарами и во время стихийных бедствий. В 1986 г. вертолеты использовались при ликвидации последствий аварии на Чернобольской АЭС. Учитывая всю серьезность сложившейся ситуации конструкторы разработали и оборудовали тогда соответствующую модификацию всего за три дня. Летчики Ми-26 сбросили с тяжеловозов на дышавший смертью реактор и зараженную местность десятки тысяч тонн специальной жидкости и других защитных материалов.

В Аэрофлот Ми-26 начали поступать в 1986 г. Первым их получило Тюменьское авиапредприятие. Именно при освоении газонефтяных месторождений Западной Сибири особенно пригодились ростовские тяжеловозы. Особенно востребованы оказались уникальные краново-монтажные способности машины. Только на ней можно перевозить и устанавливать непосредственно на место эксплуатации грузы массой до 20 т.

Довелось российским и украинским Ми-26 поучаствовать в составе миротворческих миссий ООН. Они работали на территории бывшей Югославии, в Сомали, Камбодже, Индонезии и т.д. Благодаря уникальной грузоподъемности ростовские тяжеловозы пользуются большим спросом за рубежом. Там они последние десять лет эксплуатируются как отечественными авиакомпаниями, так и в составе иностранных, нанявших вертолеты в аренду или лизинг. Одной из компаний, представляющей Ми-26Т в лизинг является кипрская компания «Натшелл». Принадлежащий ей воздушный гигант тушил пожары, перевозили грузы, выступали под эгидой ООН в роли миротворца в Восточном Тиморе. Ми-26Т выполнял в Германии и других странах Европы транспортировку тяжелых крупногабаритных грузов, строительно-монтажные работы при строительстве линий электропередач, антенно-мачтовых сооружений, реконструкции и строительстве промышленных объектов, тушение лесных и городских пожаров.

В 2002 г. Ми-26 российской авиакомпании «Вертикаль-Т» оказывали помощь даже вооруженным силам США. Тяжеловоз вывез из труднодоступных районов Афганистана на американскую базу в Баграме сбитый вертолет Боинг-Вертол CH-47 «Чинук» - самую тяжелую винтокрылую машину армейской авиации США. Богатые американцы весьма щепетильно относятся к сбережению и спасению своей винтокрылой техники.

Тяжелые винтокрылые машины в настоящее время успешно эксплуатируются в гражданских и военных целях как у нас в стране, так и за рубежом. Они используются для доставки гуманитарной помощи, эвакуации беженцев, перевозки грузов и техники, на краново-монтажных работах, при строительстве мостов, на монтаже тяжелого оборудования промышленных предприятий, при строительстве буровых, линий электропередач, разгрузке кораблей на внешнем рейде и многих других видах работы, как в обычных, так и труднодоступных районах.

После демонстрации Ми-26 на авиационном салоне в Ле-Бурже в 1981 г. самым грузоподъемным вертолетом мира заинтересовались зарубежные заказчики. Первые четыре экземпляра воздушного гиганта закупила Индия. После развала Советского Союза тяжелые машины оказались, кроме Вооруженных Сил России, в армиях стран СНГ. Они также эксплуатируются Северной Кореей (два вертолета), Южной Кореей (один), Малайзией (два), Перу (три), Мексикой (два), Грецией и Кипром. В 2005 г. заказ на Ми-26 оформила Венесуэла. Дальнейшему расширению применения Ми-26 как у нас в стране, так и за рубежом способствует получение на него в 1995г. отечественного сертификата летной годности.


Ну а теперь перейдем непосредственно к анализу участников индийского тендера.

Не так давно из Индии пришли известия о результате конкурса на покупку ударного вертолета. В том тендере победил американский Boeing AH-64D, по ряду характеристик превзошедший российский Ми-28Н. Теперь же появились новые сведения о ходе еще одного конкурса, касающегося поставок вертолетов, и снова ситуация может быть неприятной для России. Но обо всем по порядку.

В прошедшее воскресенье индийское издание Times Of India опубликовало сведения о грядущем завершении конкурса, целью которого является покупка военно-воздушными силами Индии полутора десятков тяжелых транспортных вертолетов. Основными конкурентами в ходе этих «соревнований» были вертолеты Boeing CH-47 Chinook и Ми-26Т2. Несмотря на принадлежность к одному классу, эти машины значительно различаются по своим характеристикам. В первую очередь, стоит вспомнить полезную нагрузку этих винтокрылых машин. Американский вертолет CH-47 последних модификаций может поднять в воздух грузы общей массой свыше двенадцати тонн, а для российского Ми-26Т2 этот параметр составляет 20 тысяч килограмм. Таким образом, характеристики обоих вертолетов могут прозрачно намекать на результат конкурса.


Тем не менее, Times Of India опубликовали совершенно неожиданную новость. Со ссылкой на некий источник в министерстве обороны Индии издание пишет, что победитель уже выбран, и это - не российская машина. Основной причиной такого выбора источник назвал меньшую стоимость американского вертолета. Кроме того, индийские журналисты упомянули некое превосходство «Чинука» в техническом плане. Такое сообщение смотрится, как минимум, странно. До сих пор все конкурсы с участием вертолетов Ми-26 разных модификаций заканчивались одинаково: подписанием контракта с Россией. Теперь же утверждается, что российский вертолет не только не выиграл конкурс, но почему-то стал хуже американской винтокрылой машины , которая заметно отличается от него. Попробуем разобраться в сложившейся ситуации.

Прежде всего, стоит коснуться технических характеристик. Как уже говорилось, российский вертолет имеет большую грузоподъемность. Более того, по этому параметру с Ми-26 пока не может конкурировать ни один вертолет мира. Рекордно большая грузоподъемность подкреплена размером грузовой кабины: 12х3,25х3 метра (примерно 117 кубических метров). Грузоотсек CH-47, в свою очередь, заметно меньше: 9,2х2,5х2 метра (около 45 кубометров). Нетрудно догадаться, какой вертолет сможет перевезти больше груза в весовом и объемном измерениях. В отношении грузоподъемности можно вспомнить два случая, когда российские вертолеты Ми-26 вывозили из Афганистана поврежденные CH-47. Кроме того, нормальный взлетный вес американских вертолетов всего на пару тонн превышает максимальную грузоподъемность российских Ми-26. Что касается летных данных, то скорость и дальность Ми-26 и CH-47 примерно равны. Таким образом, в техническом плане однозначно выигрывает российский вертолет. Естественно, при условии, что заказчику нужна машина с грузоподъемность в два десятка тонн. Судя по исходному техническому заданию конкурса, индийские ВВС хотят получить именно такие вертолеты.

Перейдем к финансовой стороне дела. Согласно открытым источникам, вертолеты CH-47 поздних модификаций обходятся зарубежным заказчикам примерно в 30 миллионов долларов за штуку. Относительно Ми-26Т2 такой информации нет, но предыдущие вертолеты этой модели стоили не более 25 миллионов. Иными словами, даже при значительном изменении состава оборудования, двигателей и т.п. российский вертолет новой модификации оказывается, как минимум, не дороже американского. Возможно, при подсчете экономических нюансов индийская конкурсная комиссия приняла во внимание не только цену вертолетов, но и стоимость обслуживания. Однако такой довод смотрится не совсем правильным по причине лучшей грузоподъемности Ми-26Т2. Вполне очевидно, что большая полезная нагрузка обойдется эксплуатанту в соответствующую сумму. Здесь рассуждения снова возвращаются к техническим условиям конкурса, в которых была прописана грузоподъемность в 20 тонн. Зачем, спрашивается, включать такое требование, если на покупку отвечающих ему вертолетов попросту жалко денег?


Однако самая интересная информация, которая может пролить свет на результаты индийского конкурса, поступила от РИА Новости. Российское информагентство тоже ссылается на анонимный источник, на этот раз близкий к нашей оборонной промышленности. Несмотря на анонимность, этот человек поделился вполне очевидной и ожидаемой информацией. Источник «Новостей» утверждает, что российские вертолетостроители еще не получали никаких официальных уведомлений о результате индийского конкурса. Возможно, источник РИА Новости в силу каких-то причин не располагает должной информацией, однако ряд вещей позволяет признать правильность его слов. Решение конкурсной комиссии, как это всегда случается, сразу же будет объявлено и распространено средствами массовой информации. А мы на данный момент располагаем информацией только из неофициальных анонимных источников. В первую очередь, подозрения вызывает неназванный человек из индийского Минобороны. Дело в том, что принятое за истину заявление о выигрыше CH-47 вызывает слишком много сомнений и вопросов, как технического, так и экономического характера. Источник российского РИА Новости, в свою очередь, поделился информацией, которая не вступает в очевидное противоречие с логикой и рядом других фактов.

Таким образом, в настоящее время новость о результатах конкурса на поставку тяжелого транспортного вертолета для ВВС Индии стоит признать слухом , как минимум, не имеющим официального подтверждения. В то же время, до объявления результатов тендера комиссией индийского Минобороны вопрос о победителе остается открытым. В такой ситуации стоит дождаться окончания работы конкурсной комиссии и сверить с реальностью свои подозрения в отношении того или иного анонимного источника.



источники
http://www.mi-helicopter.ru
http://topwar.ru

И у летающих платформ.

Описание

Главное отличие несущих винтов от маршевых винтов - способность быстро изменять общий и/или циклический шаг. Несущий винт вертолёта в общих чертах состоит из лопастей , втулки и шарниров .

Система управления несущим винтом состоит из автомата перекоса , соединённого с осевыми шарнирами лопастей несущего винта при помощи тяг (элементов, передающих поступательное движение). Поворот лопасти в осевом шарнире вызывает изменение угла установки лопасти.

Углом установки лопасти называется угол между хордой лопасти и конструктивной плоскостью вращения. Чем больше этот угол, тем большую подъёмную силу обеспечивает лопасть несущего винта.

Перемещение тарелки автомата перекоса вверх/вниз вдоль вала несущего винта приводит к одновременному изменению углов установки всех лопастей, тем самым регулируется мощность винта и, соответственно, высота висения(полёта) летательного аппарата. Данное изменение называется общим шагом винта .
Наклон тарелки автомата перекоса относительно корпуса летательного аппарата называется циклическим шагом и позволяет управлять аппаратом в продольно-поперечной плоскости (тангаж -крен).

Частота вращения несущего винта, как правило, постоянна, а изменение нагрузки на винте автоматически компенсируется соответствующим изменением мощности двигателей.

Существуют системы управления, в которых отсутствуют осевые шарниры лопастей. Например, в моделях радиоуправляемых вертолётов изменяется наклон вращения всего винта, а не отдельных лопастей. В вариантах несущих винтов с сервозакрылками (синхроптеры фирмы Kaman Aircraft) изменяется угол установки закрылков , расположенных на задней кромке лопастей.

Участки лопасти, расположенные ближе к оси вращения и, соответственно, описывающие окружности меньшего радиуса, имеют меньшую линейную скорость относительно воздуха и создают пропорционально меньшую подъёмную силу. Для уменьшения этого эффекта лопасть закручивают таким образом, что её угол установки плавно увеличивается по мере приближения к оси вращения, что позволяет участкам с меньшим радиусом вращения обеспечивать большую подъёмную силу. Крутка лопастей (разница между углом установки участков в корне и на конце лопасти) может составлять 6-12°.

Соединение лопастей с валом может быть шарнирным , жёстким, полужёстким и упругим. При и упругом соединении плоскость вращения несущего винта не может быть отклонена относительно фюзеляжа вертолёта, в отличие от .

Несущий винт может иметь от двух до восьми лопастей. Лопасти могут быть деревянными, цельнометаллическими и композитными (стеклопластиковыми). Композитные лопасти по сравнению с цельнометаллическими менее трудоёмки в изготовлении, обладают значительно большими ресурсом, надёжностью и коррозионной стойкостью .

Нередко лопасти выполняют пустотелыми и закачивают внутрь лопасти газ или воздух под давлением. Падение давления внутри лопасти, измеряемое специальным датчиком, сигнализирует о её повреждении .

Для уменьшения габаритов вертолёта на стоянке или при базировании в ангарах, на авианесущих кораблях и вертолётоносцах применяются складываемые несущие винты. Складывание может осуществляться вручную или автоматически .

Для снижения уровня вибрации, передаваемой от несущего винта на фюзеляж, на его втулке или лопастях устанавливаются маятниковые виброгасители . Для защиты от обледенения лопасти винта оборудуются противообледенительными системами .

В зависимости от положения несущего винта в потоке воздуха различают два основных режима работы: режим осевого обтекания, когда ось втулки винта расположена параллельно набегающему невозмущённому потоку (висение), и режим косого обтекания, при котором поток воздуха набегает на несущий винт под углом к оси втулки.

Существует проект фиксируемого в полёте несущего винта, так называемый X-Wing, устанавливаемый на вертолёте Sikorsky S-72 .

Несущий винт, заключённый в кольцевой канал, называют импеллером , такая конструкция увеличивает мощность винта и уменьшает шум, однако при этом увеличивается вес несущей конструкции.

Существуют также проекты несущего винта с дисковым крылом, например «Discrotor» Фирмы Boeing или Вертолёт Эллехаммера (англ. ) . В проекте «Discrotor» лопасти несущего винта телескопические, во время полёта лопасти могут убираться внутрь дискового крыла.

Вибрации

При вращении несущего винта возникают вибрации, которые могут вызывать преждевременный выход из строя приборов, оборудования, и даже приводить к разрушению летательного аппарата. К появлению вибрации относятся такие явления, как земной резонанс, флаттер и вихревое кольцо.

Земной резонанс

Этому явлению подвержены летательные аппараты, у которых лопасти несущего винта крепятся ко втулке посредством шарнирного соединения. Центр масс лопастей нераскрученного винта находится на его оси вращения. При вращении винта лопасти могут поворачиваться в своих вертикальных шарнирах, и их общий центр масс оказывается смещённым в сторону от оси вращения, что приводит к колебаниям втулки винта в горизонтальной плоскости. При совпадении гармоник этих колебаний и собственных колебаний вертолёта, стоящего на земле на упругом шасси, возникают неконтролируемые колебания вертолёта - земной резонанс .

Земной резонанс можно подавить, введя демпфирование как в вертикальном шарнире, так и в амортизационной стойке шасси вертолёта. Более благоприятные условия для создания земного резонанса создаются при пробеге вертолёта по земле.

Флаттер

Флаттером называют самовозбуждающиеся колебания лопастей несущего винта, происходящие за счёт энергии воздушного потока и приводящие к быстрому нарастанию амплитуды махового движения. Флаттер особенно опасен для соосной схемы , так как из-за этого эффекта происходит перехлёст лопастей. Для избежания флаттера в лопасти несущего винта устанавливается противофлаттерный груз, а на втулке маятниковые виброгасители . На вертолётах с шарнирным и упругим типом соединения лопастей признаком появления флаттера во время полёта является «размывание» конуса несущего винта.

Вихревое кольцо

Схемы крепления лопастей

Лопасти несущего винта крепятся к втулке , свободно вращающейся вокруг вала вертолёта. Существует следующие основные виды таких соединений.

Шарнирное соединение

При шарнирном соединении, изобретённом Хуаном де Ла Сьерва , лопасти крепятся к корпусу втулки последовательно через осевой, вертикальный и горизонтальный шарниры. Благодаря шарнирному сочленению лопастей с корпусом втулки значительно снижаются переменные напряжения в элементах несущего винта и уменьшаются передающиеся от винта на фюзеляж вертолёта моменты аэродинамических сил.

Горизонтальные шарниры обеспечивают возможность махового движения лопастей вверх-вниз; вертикальные позволяют лопастям совершать колебания в плоскости вращения, возникающие под действием переменных сил лобового сопротивления и сил Кориолиса , появляющихся при колебаниях лопасти относительно горизонтального шарнира; осевые шарниры предназначены для изменения углов установки лопастей.

Во время полёта на вертолётах с шарнирным соединением можно увидеть, что лопасти в воздухе описывают не круг, а фигуру в виде воронки или конуса.

Упругое (бесшарнирное) соединение

Роль вертикального и горизонтального шарнира при таком соединении играет упругий элемент, изготовленный из композитных материалов, или торсион . Это позволяет по сравнению с шарнирным соединением уменьшить число деталей, уменьшить трудоёмкость обслуживания, устранить необходимость смазывания и увеличить ресурс несущего винта в 3-10 раз. На несущем винте с таким соединением может быть значительно повышена эффективность управления по сравнению с шарнирным, что способствует увеличению манёвренности вертолёта, к тому же уменьшается явление «земного резонанса».

Полужёсткое соединение

При такой схеме две лопасти винта жёстко крепятся к центральной втулке по типу качелей (коромысла): когда одна лопасть совершает маховое движение вверх, другая совершает симметричное движение вниз. Лётчик, изменяя положение ручки управления вертолётом, тем самым изменяет положение всей плоскости вращения несущего винта. Вертолёт с полужёсткой втулкой несущего винта обладает хорошими характеристиками управляемости. Важным преимуществом такой схемы является её простота (отсутствие высоконагруженных подшипников в шарнирах, демпферов и центробежных ограничителей свеса лопастей), облегчающая и удешевляющая изготовление винта и обслуживание его в эксплуатации. Вертолёты с полужёсткой схемой серийно производят фирмы Bell и Robinson .

Жёсткое соединение

Лопасти винта жёстко крепятся к втулке, установленной на приводном валу, с использованием только осевого шарнира. Такая схема является самой простой, но в то же время наиболее подверженной разрушительным вибрациям. К тому же такая схема обладает повышенной массой по сравнению с шарнирным соединением. Стоит отметить, что переменные нагрузки на лопасти несущего винта в этом случае могут быть уменьшены за счёт гибкости самих лопастей.

Жёсткое соединение применяется в воздушных винтах самолётов и до изобретения Хуаном де Ла Сьерва шарнирного соединения использовалось на всех экспериментальных вертолётах начала 20-го века. В настоящее время такое соединение можно найти в несущих винтах вертолёта Sikorsky X2 .

Динамика несущего винта в полёте

При поступательном движении вертолёта в горизонтальной плоскости несущий винт обтекается встречным воздушным потоком. В случае его вращения по часовой стрелке лопасть, находящаяся слева по направлению полёта, движется навстречу воздушному потоку (наступающая лопасть), а находящаяся справа - попутно ему (отступающая лопасть). Соответственно, скорость наступающей лопасти относительно набегающего воздуха выше, чем скорость отступающей, и максимальна на азимуте 90°. Поскольку сопротивление воздуха и подъёмная сила пропорциональны скорости, наступающая лопасть создаёт большую подъёмную силу и испытывает большее сопротивление.

Линейная скорость пропорциональна расстоянию от оси вращения и, соответственно, максимальна на концах лопастей. При определённых значениях угловой скорости вращения винта линейная скорость концевых участков наступающей лопасти приближается к скорости звука , в результате чего на этих участках развивается волновой кризис . Напротив, скорость ряда участков отступающей лопасти относительно воздуха настолько мала, что на них происходит срыв потока , а участки, расположенные ещё ближе ко втулке, попадают в зону обратного обтекания (профиль лопасти обтекается воздухом с острой части, что создаёт обратную подъёмную силу).

Лопасти несущего винта, попадающие в зоны срыва потока и волнового кризиса, характеризуются увеличением вибраций и резким снижением подъёмной силы . Противодействовать срыву потока можно увеличением угловой скорости вращения несущего винта, однако при этом увеличивается зона волнового кризиса. Негативное влияние зоны волнового кризиса можно уменьшить, применив специальные законцовки лопастей винта - например, стреловидные.

Поскольку наступающие лопасти создают большую подъёмную силу, чем отступающие, для сохранения баланса подъёмных сил разных участков несущего винта существует механизм компенсации. Механизм основан на применении горизонтального шарнира и осевого шарнира, жёстко соединённого с автоматом перекоса. Во время полёта лопасть находится под углом к обтекаемому воздушному потоку, возникаемое сопротивление воздуха приводит к взмаху лопасти вверх. Так как осевой шарнир соединён с автоматом перекоса, то при взмахе лопасти вверх происходит поворот лопасти в сторону уменьшения угла между лопастью и воздушным потоком. Уменьшение этого угла приводит к уменьшению подъёмной силы лопасти.