Блок питания 12в своими руками. Мощный импульсный блок питания своими руками. Полная сборка прибора

Тонировка

Может ли мастер обойтись в строительстве без наличия такого незаменимого инструмента, как шуруповерт? Провести полноценную работу без применения такого инструмента не получится, ведь постоянно нужно что-то где-нибудь подкрутить или усилить. Такая необходимость в хозяйстве шуруповерта объясняется его функциональностью и способностью существенно облегчить некоторые из этапов строительных и отделочных работ.

Вы можете не знать, какой шуруповерт лучше, но точно оцените все его возможности по достоинству, особенно те, кто раньше вкручивал шурупы при помощи отвертки. Но, как и любая техника, аккумуляторный шуруповерт со временем теряет свою былую эффективность и уже не работает с такой мощностью, как раньше. Как бы решить такую проблему в случае ее возникновения? Конечно, можно приобрести другой аккумулятор, но стоимость новой батареи «кусается», потому мастера предлагают альтернативу - сделать блок питания 12В для шуруповерта своими руками. Это отличный выход з ситуации и прекрасная возможность попробовать свои силы в радиотехнике.

Этапы предварительных работ: готовимся к конструированию

Перед тем как приступить к переделыванию аккумулятора, подберите другой сетевой блок, подходящий по габаритам, в дальнейшем его необходимо поместить в имеющийся корпус и закрепить. Изнутри подготовленного устройства все убирают и замеряют внутреннее пространство, которое по сравнению с наружным содержимым отличается.

Что необходимо знать, приступая к конструированию

Изучите маркировку или конструкционные особенности, указанные на корпусе рабочего инструмента, и, исходя из этих показателей, определите необходимое для питания напряжение. В нашем случае будет достаточно собрать своими руками блок питания 12В для шуруповерта. Если требуемые показатели отличны от 12В, продолжайте искать взаимозаменяемый вариант. Выбрав аналог, произведите подсчет тока потребления шуруповерта, так как такой параметр производитель не указывает. Чтобы выяснить это, потребуется узнать мощность прибора.

Если времени на подбор приспособления у вас нет, а проведение вычислений занимает слишком много времени, возьмите любой попавшийся блок питания. Покупая его, помимо тока, спросите о емкости батареи. Для конструирования блока питания 12В для шуруповерта своими руками будет достаточно прибора емкостью 1,2А и зарядкой - 2,5. Запомните, перед тем как искать подзарядку, определите такие необходимые параметры:

  1. Размеры блока.
  2. Минимальный ток.
  3. Необходимый уровень напряжения.

Процесс конструирования аккумуляторного блока для шуруповерта

Подобрав новое устройство и все необходимые для конструирования детали, можно приступать к работе. Сборка блока питания 12В для шуруповерта своими руками состоит из таких этапов:

  1. Подобрав оптимальный блок питания, проверьте его на предмет сходства с заявленными характеристиками, которые будут зависеть от того, какой шуруповерт. Лучше использовать в качестве основания для новой батареи блок от компьютера.
  2. Разберите шуруповерт и извлеките старый накопитель. Если корпус клееный, аккуратно постучите вдоль шва молотком или надсеките при помощи тонкого лезвия ножа. Так вы откроете коробку с наименьшими повреждениями.
  3. Отпаяйте шнур и выводы от вилки и отделите их от остальной конструкции.
  4. В месте, где раньше находился блок питания аккумулятора для шуруповерта, разместите прочее содержимое, вынутое из корпуса.
  5. Шнур электропитания выведите через проем в корпусе. Подключите его к блоку питания, припаяв на место.
  6. При помощи пайки объедините выход блока питания для компьютера с клеммами батареи. Не забудьте о соблюдении полярности.
  7. Подсоедините сконструированный аккумулятор к прибору и протестируйте его.
  8. Если габариты нового зарядного устройства превышают параметры прежнего аккумулятора, его можно встроить внутрь рукоятки шуруповерта.
  9. Чтобы ограничить поступление напряжения от сети к батарее параллельным питающим выходом, устанавливают диод с необходимой мощностью изнутри разрыва кабеля «+» между гнездом аккумулятора, в том числе выводом, но полюсом «-» в сторону движка.

Что дает такое обновление аккумулятора

Перевоплощение блока питания для компьютера в беспрерывно работающий от сети аккумулятор для шуруповерта обладает рядом достоинств, а именно:

  • Нет необходимости беспокоиться о периодичной подзарядке устройства.
  • Время простоя в период длительной работы сводится к минимуму.
  • Крутящий момент получает неизменное значение благодаря обеспечению постоянным током.
  • Подключение переделанного компьютерного блока питания для шуруповерта (12В) никак не сказывается на технических параметрах изделия, даже если прибор не поддавался эксплуатации на протяжении длительного периода времени.

Единственное качество, о котором упоминают как о недостатке - наличие электрической розетки вблизи места проведения работ. Такую проблему легко решить, подключив удлинитель.

Материалы и рабочие инструмента для модернизации шуруповерта

Переделка компьютерного блока питания для шуруповерта не отличается сложностью, более того такое занятие познавательно, особенно для новичков в области радиомеханики. Имея необходимые навыки и все составляющие, за недолгое время у вас будет трансформированный сетевой шуруповерт. Для проведения работ понадобится наличие:

  • зарядного приспособления от шуруповерта;
  • старого заводского аккумулятора;
  • мягкого многожильного электрокабеля;
  • паяльника и припоя;
  • кислоты;
  • изоляционной ленты;
  • блока питания от компьютера (или другого).

Варианты трансформирования

Можно использовать различные варианты блоков питания для создания компактного аккумулятора для бесперебойной работы шуруповерта.

Батарея или блок питания от компьютерной техники

Устройство, поддерживающее заряд ПК или ноутбука, вполне сгодится для выполнения поставленной цели. Процесс внедрения блока питания в шуруповерт выглядит следующим образом:

  1. Корпус шуруповерта полностью разбирают.
  2. Убирают старый источник питания, а провода распаивают.
  3. Проводку нового блока подключают к проводке старого, питающей прошлый аккумулятор. При проведении такой операции важно соблюдать полярность!
  4. Включают шуруповерт и проверяют на предмет работоспособности. Если все провода подсоединены правильно, то машинка заработает.
  5. В корпусе устройства предусмотрено отверстие, куда легко помещается штекер с разъемом для подзарядки. Модернизировав шуруповерт таким способом, вы получаете усовершенствованное устройство, которое теперь в процессе работы еще и подзаряжается как ноутбук от сети в 220V.
  6. Новый источник питания монтируют внутрь шуруповерта, закрепляя его клеем.
  7. Остальные корпусные элементы возвращают на место и скручивают изделие, придавая ему первоначальный вид.

Вот и все! Теперь вы знаете, как из аккумуляторного шуруповерта сделать сетевой.

Автоаккумулятор как источник питания

Автомобильная батарея - отличный вариант для дистанционного подключения шуруповерта к сети. Чтобы реализовать идею, просто отсоедините зажимы от рабочего инструмента и запитайте к источнику питания.

Важно! Использование такого источника для длительной эксплуатации шуруповерта крайне не рекомендуется.

Использование сварочного инвертора для подпитки шуруповерта

Чтобы переделать старую конструкцию, подготовьте схему блока питания для шуруповерта 12В. Старую конструкцию в некоторой мере совершенствуют, добавляя вторичную катушку.

При сравнении с компьютерной батареей преимущество инвертора заметно сразу. Благодаря конструкционным особенностям, сразу удается определить необходимый уровень напряжения и силу тока на выходе. Это идеальный метод для тех, кто живет радиотехникой.

Особенности сетевых шуруповертов

Можно трансформировать аппарат в сетевой прибор и по другой методике, основанной на производстве передвижной станции для подпитки шуруповерта. К агрегату подключают эластичный провод, к одному из концов которого прикреплена вилка. Хотя, чтобы эксплуатировать такую станцию, потребуется соорудить специальный блок питания или подключить готовый трансформатор с выпрямителем.

Важно! Не забудьте проследить, чтобы характеристики трансформатора совпадали с параметрами инструмента.

Если вы в этом деле новичок, то, скорее всего, выполнить трансформирование катушки своими руками вам будет сложно. Не обладая важными навыками, вы можете ошибиться с числом витков, подбором диаметра проволоки, потому лучше доверить такую работу специалисту или хотя бы человеку, разбирающемуся в теме.

90% техники продается с уже встроенным трансформатором. Все, что потребуется сделать - подобрать оптимальный вариант и сконструировать под него выпрямитель. Чтобы выполнить пайку выпрямительного моста, применяют полупроводниковые диоды, подобранные строго по параметрам инструмента.

Эксперты рекомендуют следовать определенным правилам всем, кто решился на реконструкцию шуруповерта и конструирование блока питания 12В для шуруповерта своими руками. Инструкция по модернизации инструмента включает такие советы:

  1. Сетевой шуруповерт можно эксплуатировать сколько угодно и не беспокоиться о том, что батарея разрядится. Однако такому инструменту необходим отдых. Потому делайте пятиминутные перерывы во избежание перегрева или перегрузки инструмента.
  2. Работая с шуруповертом, не забывайте крепить провод в области локтя. Так эксплуатировать прибор будет удобнее, а шнур не будет мешать при ввинчивании шурупов.
  3. Проводите систематическую очистку блока питания шуруповерта от скоплений пыли и грязевых отложений.
  4. Новый аккумулятор предусмотрен заземлением.
  5. Не применяйте для подключения к сети больше одного удлинителя.
  6. Такой прибор не рекомендуется для использования в высотных работах (от двух метров).

Теперь вы знаете, какой блок питания нужен для шуруповерта 12В, и какие материалы использовать для того, чтобы сделать такую конструкцию самостоятельно в домашних условиях. Нет необходимости заменять старый шуруповерт на новый. Радикальное решение стоит принимать, только если агрегат полностью вышел из строя, а «сдохший» аккумулятор - не проблема для умельца. Достаточно лишь иметь понятие о радиотехнике и вооружиться паяльником. Тогда и справиться с поставленной задачей будет проще.

Сделать блок питания своими руками имеет смысл не только увлеченному радиолюбителю. Самодельный блок электропитания (БП) создаст удобства и сэкономит немалую сумму также в следующих случаях:

  • Для питания низковольтного электроинструмента, ради экономии ресурса дорогостоящей аккумуляторной батареи (АКБ);
  • Для электрификации помещений особо опасных по степени поражения электротоком: подвалов, гаражей, сараев и т.п. При питании их переменным током большая его величина в низковольтной проводке способна создать помехи бытовой технике и электронике;
  • В дизайне и творчестве для точной, безопасной и безотходной резки нагретым нихромом пенопласта, поролона, легкоплавких пластиков;
  • В светодизайне – использование специальных БП позволит продлить жизнь светодиодной ленты и получить стабильные световые эффекты. Питание подводных осветителей , и пр. от бытовой электросети вообще недопустимо;
  • Для зарядки телефонов, смартфонов, планшетов, ноутбуков вдали от стабильных источников электропитания;
  • Для электроакупунктуры;
  • И многих других, не имеющих прямого отношения к электронике, целей.

Допустимые упрощения

Профессиональные БП рассчитываются на питание нагрузки любого рода, в т.ч. реактивной. В числе возможных потребителей – прецизионная аппаратура. Заданное напряжение профи-БП должен поддерживать с высочайшей точностью неопределенно долгое время, а его конструкция, защита и автоматика должны допускать эксплуатацию неквалифицированным персоналом в тяжелых условиях, напр. биологами для питания своих приборов в теплице или в экспедиции.

Любительский лабораторный блок питания свободен от этих ограничений и поэтому может быть существенно упрощен при сохранении достаточных для собственного употребления качественных показателей. Далее, путем также несложных усовершенствований, из него можно получить БП специального назначения. Чем мы сейчас и займемся.

Сокращения

  1. КЗ – короткое замыкание.
  2. ХХ – холостой ход, т.е. внезапное отключение нагрузки (потребителя) или обрыв в ее цепи.
  3. КСН – коэффициент стабилизации напряжения. Он равен отношению изменения входного напряжения (в % или разах) к такому же выходного при неизменном токе потребления. Напр. напряжение сети упало «по полной», с 245 до 185В. Относительно нормы в 220В это будет 27%. Если КСН БП равен 100, выходное напряжение изменится на 0,27%, что при его величине 12В даст дрейф в 0,033В. Для любительской практики более чем приемлемо.
  4. ИПН – источник нестабилизированного первичного напряжения. Это может быть трансформатор на железе с выпрямителем или импульсный инвертор напряжения сети (ИИН).
  5. ИИН – работают на повышенной (8-100 кГц) частоте, что позволяет использовать легкие компактные трансформаторы на феррите с обмотками из нескольких-нескольких десятков витков, но не лишены недостатков, см. ниже.
  6. РЭ – регулирующий элемент стабилизатора напряжения (СН). Поддерживает на выходе заданную его величину.
  7. ИОН – источник опорного напряжения. Задает эталонное его значение, по которому совместно с сигналами обратной связи ОС устройство управления УУ воздействует на РЭ.
  8. СНН – стабилизатор напряжения непрерывного действия; попросту – «аналоговый».
  9. ИСН – импульсный стабилизатор напряжения.
  10. ИБП – импульсный блок питания.

Примечание: как СНН, так и ИСН могут работать как от ИПН промышленной частоты с трансформатором на железе, так и от ИИН.

О компьютерных БП

ИБП компактны и экономичны. А в кладовке у многих валяется БП от старого компа, морально устаревший, но вполне исправный. Так нельзя ли приспособить импульсный блок питания от компьютера для любительских/рабочих целей? К сожалению, компьютерный ИБП достаточно высоко специализированное устройство и возможности его применения в быту/на работе весьма ограничены:

Использовать ИБП, переделанный из компьютерного, обычному любителю целесообразно, пожалуй, только для питания электроинструмента; об этом см. далее. Второй случай – если любитель занимается ремонтом ПК и/или созданием логических схем. Но тогда он уже знает, как для этого приспособить БП от компа:

  1. Нагрузить основные каналы +5В и +12В (красные и желтые провода) нихромовыми спиральками на 10-15% номинальной нагрузки;
  2. Зеленый провод мягкого запуска (слаботочной кнопкой на передней панели системника) pc on замкнуть на общий, т.е. на любой из черных проводов;
  3. Вкл/выкл производить механически, тумблером на задней панели БП;
  4. При механическом (железном) I/O «дежурка», т.е. независимое питание USB портов +5В будет также выключаться.

За дело!

Вследствие недостатков ИБП, плюс их принципиальная и схемотехническая сложность, мы только в конце рассмотрим пару таких, но простых и полезных, и поговорим о методике ремонта ИИН. Основная же часть материала посвящена СНН и ИПН с трансформаторами промышленной частоты. Они позволяют человеку, только-только взявшему в руки паяльник, построить БП весьма высокого качества. А имея его на хозяйстве, освоить технику «потоньше» будет легче.

ИПН

Сначала рассмотрим ИПН. Импульсные подробнее оставим до раздела о ремонте, но у них с «железными» есть общее: силовой трансформатор, выпрямитель и фильтр подавления пульсаций. В комплексе они могут быть реализованы различным образом сообразно назначению БП.

Поз. 1 на Рис. 1 – однополупериодный (1П) выпрямитель. Падение напряжения на диоде наименьшее, ок. 2В. Но пульсация выпрямленного напряжения – с частотой 50Гц и «рваная», т.е. с промежутками между импульсами, поэтому конденсатор фильтра пульсаций Сф должен быть в 4-6 раз большей емкости, чем в прочих схемах. Использование силового трансформатора Тр по мощности – 50%, т.к. выпрямляется всего 1 полуволна. По этой же причине в магнитопроводе Тр возникает перекос магнитного потока и сеть его «видит» не как активную нагрузку, а как индуктивность. Поэтому 1П выпрямители применяются только на малую мощность и там, где по-иному никак нельзя, напр. в ИИН на блокинг-генераторах и с демпферным диодом, см. далее.

Примечание: почему 2В, а не 0,7В, при которых открывается p-nпереход в кремнии? Причина – сквозной ток, о котором см. далее.

Поз. 2 – 2-полупериодный со средней точкой (2ПС). Потери на диодах такие же, как в пред. случае. Пульсация – 100 Гц сплошная, так что Сф нужен наименьший из возможных. Использование Тр – 100% Недостаток – удвоенный расход меди на вторичную обмотку. Во времена, когда выпрямители делали на лампах-кенотронах, это не имело значения, а теперь – определяющее. Поэтому 2ПС используют в низковольтных выпрямителях, преимущественно повышенной частоты с диодами Шоттки в ИБП, однако принципиальных ограничений по мощности 2ПС не имеют.

Поз. 3 – 2-полупериодный мостовой, 2ПМ. Потери на диодах – удвоенные по сравнению с поз. 1 и 2. Остальное – как у 2ПС, но меди на вторичку нужно почти вдвое меньше. Почти – потому что несколько витков приходится доматывать, чтобы компенсировать потери на паре «лишних» диодов. Наиболее употребительная схема на напряжение от 12В.

Поз. 3 – двухполярный. «Мост» изображен условно, как принято в принципиальных схемах (привыкайте!), и повернут на 90 градусов против часовой стрелки, но на самом деле это пара включенных разнополярно 2ПС, как ясно видно далее на рис. 6. Расход меди как у 2ПС, потери на диодах как у 2ПМ, остальное как у того и другого. Строится в основном для питания аналоговых устройств, требующих симметрии напряжения: Hi-Fi УМЗЧ, ЦАП/АЦП и др.

Поз. 4 – двухполярный по схеме параллельного удвоения. Дает без дополнительных мер повышенную симметрию напряжения, т.к. асимметрия вторичной обмотки исключена. Использование Тр 100%, пульсации 100 Гц, но рваные, поэтому Сф нужны удвоенной емкости. Потери на диодах примерно 2,7В за счет взаимного обмена сквозными токами, см. далее, и при мощности более 15-20 Вт резко возрастают. Строятся в основном как маломощные вспомогательные для независимого питания операционных усилителей (ОУ) и др. маломощных, но требовательных к качеству электропитания аналоговых узлов.

Как выбрать трансформатор?

В ИБП вся схема чаще всего четко привязана к типоразмеру (точнее – к объему и площади поперечного сечения Sс) трансформатора/трансформаторов, т.к. использование тонких процессов в феррите позволяет упростить схему при большей ее надежности. Здесь «как-нибудь по-своему» сводится к точному соблюдению рекомендаций разработчика.

Трансформатор на железе выбирают с учетом особенностей СНН, или сообразуются с ними при его расчете. Падение напряжения на РЭ Uрэ не надо брать менее 3В, иначе КСН резко упадет. При увеличении Uрэ КСН несколько возрастает, но гораздо быстрее растет рассеиваемая РЭ мощность. Поэтому Uрэ берут 4-6 В. К нему добавляем 2(4)В потерь на диодах и падение напряжения на вторичной обмотке Тр U2; для диапазона мощностей 30-100 Вт и напряжений 12-60 В берем его 2,5В. U2 возникает преимущественно не на омическом сопротивлении обмотки (оно у мощных трансформаторов вообще ничтожно мало), а вследствие потерь на перемагничивание сердечника и создание поля рассеивания. Попросту, часть энергии сети, «накачанной» первичной обмоткой в магнитопровод, улетучивается в мировое пространство, что и учитывает величина U2.

Итак, мы насчитали, допустим, для мостового выпрямителя, 4+4+2,5 = 10,5В лишку. Прибавляем его к требуемому выходному напряжению БП; пусть это будет 12В, и делим на 1,414, получим 22,5/1,414 = 15,9 или 16В, это будет наименьшее допустимое напряжение вторичной обмотки. Если Тр фабричный, из типового ряда берем 18В.

Теперь в дело идет ток вторички, который, естественно, равен максимальному току нагрузки. Пусть нам нужно 3А; умножаем на 18В, будет 54Вт. Мы получили габаритную мощность Тр, Pг, а паспортную P найдем, поделив Pг на КПД Тр η, зависящий от Pг:

  • до 10Вт, η = 0,6.
  • 10-20 Вт, η = 0,7.
  • 20-40 Вт, η = 0,75.
  • 40-60 Вт, η = 0,8.
  • 60-80 Вт, η = 0,85.
  • 80-120 Вт, η = 0,9.
  • от 120 Вт, η = 0,95.

В нашем случае будет P = 54/0,8 = 67,5Вт, но такого типового значения нет, так что придется брать 80Вт. Для того, чтобы получить на выходе 12Вх3А = 36Вт. Паровоз, да и только. Впору научиться рассчитывать и мотать «трансы» самому. Тем более что в СССР были разработаны методики расчета трансформаторов на железе, позволяющие без потери надежности выжимать 600Вт из сердечника, который, при расчете по радиолюбительским справочникам, способен дать всего 250Вт. «Железный транс» вовсе не так туп, как кажется.

СНН

Выпрямленное напряжение нужно стабилизировать и, чаще всего, регулировать. Если нагрузка мощнее 30-40 Вт, необходима и защита от КЗ, иначе неисправность БП может вызвать аварию сети. Все это вместе делает СНН.

Простой опорный

Начинающему лучше сразу не лезть в большие мощности, а сделать для пробы простой высокостабильный СНН на 12в по схеме на Рис. 2. Его можно будет потом использовать как источник эталонного напряжения (точная его величина выставляется R5), для поверки приборов или как ИОН высококачественного СНН. Максимальный ток нагрузки этой схемы всего 40мА, но КСН на допотопном ГТ403 и таком же древнем К140УД1 более 1000, а при замене VT1 на кремниевый средней мощности и DA1 на любой из современных ОУ превысит 2000 и даже 2500. Ток нагрузки при этом также возрастет до 150-200 мА, что уже годится в дело.

0-30

Следующий этап – блок питания с регулировкой напряжения. Предыдущий выполнен по т. наз. компенсационной схеме сравнения, но переделать такой на большой ток сложно. Мы сделаем новый СНН на основе эмиттерного повторителя (ЭП), в котором РЭ и УУ совмещены всего в 1-м транзисторе. КСН выйдет где-то 80-150, но любителю этого хватит. Зато СНН на ЭП позволяет без особых ухищрений получить выходной ток до 10А и более, сколько отдаст Тр и выдержит РЭ.

Схема простого БП на 0-30В приведена на поз. 1 Рис. 3. ИПН для него – готовый трансформатор типа ТПП или ТС на 40-60 Вт со вторичной обмоткой на 2х24В. Выпрямитель типа 2ПС на диодах на 3-5А и более (КД202, КД213, Д242 и т.п.). VT1 устанавливается на радиатор площадью от 50 кв. см; очень хорошо подойдет старый от процессора ПК. При таких условиях этот СНН не боится КЗ, только VT1 и Тр греться будут, так что для защиты хватит предохранителя на 0,5А в цепи первичной обмотки Тр.

Поз. 2 показывает, насколько удобен для любителя СНН на ЭП: там схема БП на 5А с регулировкой от 12 до 36 В. Этот БП может отдать в нагрузку и 10А, если найдется Тр на 400Вт 36В. Первая его особенность – интегральный СНН К142ЕН8 (предпочтительно с индексом Б) выступает в необычной роли УУ: к его собственным 12В на выходе добавляется, частично или полностью, все 24В, напряжение от ИОН на R1, R2, VD5,VD6. Емкости С2 и С3 предотвращают возбуждение на ВЧ DA1, работающей в необычном режиме.

Следующий момент – устройство защиты (УЗ) от КЗ на R3, VT2, R4. Если падение напряжения на R4 превысит примерно 0,7В, VT2 откроется, замкнет на общий провод базовую цепь VT1, он закроется и отключит нагрузку от напряжения. R3 нужен, чтобы экстраток при срабатывании УЗ не вывел из строя DA1. Увеличивать его номинал не надо, т.к. при срабатывании УЗ нужно надежно запереть VT1.

И последнее – кажущаяся избыточной емкость конденсатора выходного фильтра С4. В данном случае это безопасно, т.к. максимальный ток коллектора VT1 в 25А обеспечивает его заряд при включении. Но зато данный СНН может в течение 50-70 мс отдать в нагрузку ток до 30А, так что этот простой блок питания пригоден для питания низковольтного электроинструмента: его пусковой ток не превышает такого значения. Нужно только сделать (хотя бы из оргстекла) контактную колодку-башмак с кабелем, надеваемую на пятку рукояти, и пусть «акумыч» отдыхает и бережет ресурс до выезда.

Об охлаждении

Допустим, в данной схеме на выходе 12В при максимуме в 5А. Это всего лишь средняя мощность электролобзика, но, в отличие от дрели или шуруповерта, он берет ее постоянно. На С1 держится около 45В, т.е. на РЭ VT1 остается где-то 33В при токе 5А. Рассеиваемая мощность – более 150Вт, даже более 160, если учесть, что VD1-VD4 тоже надо охлаждать. Отсюда ясно, что любой мощный регулируемый БП должен быть снабжен весьма эффективной системой охлаждения.

Ребристый/игольчатый радиатор на естественной конвекции проблемы не решает: расчет показывает, что нужна рассевающая поверхность от 2000 кв. см. и толщина тела радиатора (пластины, от которой отходят ребра или иглы) от 16 мм. Заполучить столько алюминия в фасонном изделии в собственность для любителя было и остается мечтой в хрустальном замке. Процессорный кулер с обдувом также не годится, он рассчитан на меньшую мощность.

Один из вариантов для домашнего мастера – алюминиевая пластина толщиной от 6 мм и размерами от 150х250 мм с насверленными по радиусам от места установки охлаждаемого элемента в шахматном порядке отверстиями увеличивающегося диаметра. Она же послужит задней стенкой корпуса БП, как на Рис. 4.

Непременное условие эффективности такого охладителя – пусть слабый, но непрерывный ток воздуха сквозь перфорацию снаружи внутрь. Для этого в корпусе (желательно вверху) устанавливают маломощный вытяжной вентилятор. Подойдет компьютерный диаметром от 76 мм, напр. доп. кулер HDD или видеокарты. Его подключают к выводам 2 и 8 DA1, там всегда 12В.

Примечание: вообще-то радикальный способ побороть эту проблему – вторичная обмотка Тр с отводами на 18, 27 и 36В. Первичное напряжение переключают смотря по тому, какой инструмент в работе.

И все-таки ИБП

Описанный БП для мастерской хорош и весьма надежен, но таскать его с собой на выезд тяжко. Вот тут и придется впору компьютерный БП: к большинству его недостатков электроинструмент нечувствителен. Некоторая доработка сводится чаще всего к установке выходного (ближайшего к нагрузке) электролитического конденсатора большой емкости с целью, описанной выше. Рецептов переделки компьютерных БП под электроинструмент (преимущественно шуруповерты, как не очень мощные, но очень полезные) в рунете известно немало, один из способов показан в ролике ниже, для инструмента на 12В.

Видео: БП 12В из компьютерного

С инструментами на 18В еще проще: при той же мощности они потребляют меньший ток. Здесь может пригодится куда более доступное устройство зажигания (балласт) от лампы-экономки на 40 и более Вт; его можно целиком поместить в корпус от негодной АКБ, и снаружи останется только кабель с сетевой вилкой. Как из балласта от сгоревшей экономки сделать блок питания для шуруповерта на 18В, см. следующее видео.

Видео: БП 18В для шуруповерта

Высокий класс

Но вернемся к СНН на ЭП, их возможности далеко еще не исчерпаны. На Рис. 5 – двухполярный мощный блок питания с регулировкой 0-30 В, пригодный для Hi-Fi звуковой аппаратуры и прочих привередливых потребителей. Установка выходного напряжения производится одной ручкой (R8), а симметрия каналов поддерживается автоматически при любой его величине и любом токе нагрузки. Педант-формалист при виде этой схемы, возможно, поседеет на глазах, но у автора такой БП исправно работает уже около 30 лет.

Главным камнем преткновения при его создании было δr = δu/δi, где δu и δi – малые мгновенные приращения напряжения и тока соответственно. Для разработки и наладки высококлассной аппаратуры нужно, чтобы δr не превышало 0,05-0,07 Ом. Попросту, δr определяет способность БП мгновенно реагировать на броски тока потребления.

У СНН на ЭП δr равно таковому ИОН, т.е. стабилитрона, деленному на коэффициент передачи тока β РЭ. Но у мощных транзисторов β на большом коллекторном токе сильно падает, а δr стабилитрона составляет от единиц до десятков Ом. Здесь же, чтобы компенсировать падение напряжения на РЭ и уменьшить температурный дрейф выходного напряжения, пришлось набрать их целую цепочку пополам с диодами: VD8-VD10. Поэтому опорное напряжение с ИОН снимается через дополнительный ЭП на VT1, его β умножается на β РЭ.

Следующая фишка данной конструкции – защита от КЗ. Простейшая, описанная выше, в двухполярную схему никак не вписывается, поэтому задача защиты решена по принципу «против лома нет приема»: защитного модуля как такового нет, но есть избыточность параметров мощных элементов – КТ825 и КТ827 на 25А и КД2997А на 30А. Т2 такой ток дать не способен, а пока он разогреется, успеют сгореть FU1 и/или FU2.

Примечание: делать индикацию перегорания предохранителей на миниатюрных лампах накаливания не обязательно. Просто тогда светодиоды были еще довольно дефицитны, а СМок в загашнике насчитывалось несколько горстей.

Осталось уберечь РЭ от экстратоков разряда фильтра пульсаций С3, С4 при КЗ. Для этого они включены через ограничительные резисторы малого сопротивления. При этом в схеме могут возникнуть пульсации с периодом, равным постоянной времени R(3,4)C(3,4). Их предотвращают С5, С6 меньшей емкости. Их экстратоки для РЭ уже не опасны: заряд стечет быстрее, чем кристаллы мощнющих КТ825/827 разогреются.

Симметрию выхода обеспечивает ОУ DA1. РЭ минусового канала VT2 открывается током через R6. Как только минус выхода по модулю превзойдет плюс, он приоткроет VT3, а тот подзакроет VT2 и абсолютные величины выходных напряжений сравняются. Оперативный контроль за симметрией выхода осуществляется по стрелочному прибору с нулем посередине шкалы P1 (на врезке – его внешний вид), а регулировка при необходимости – R11.

Последняя изюминка – выходной фильтр С9-С12, L1, L2. Такое его построение необходимо для поглощения возможных ВЧ наводок от нагрузки, чтобы не ломать голову: опытный образец глючит или БП «заколбасило». С одними электролитическими конденсаторами, зашунтированными керамикой, тут полной определенности нет, мешает большая собственная индуктивность «электролитов». А дроссели L1, L2 разделяют «отдачу» нагрузки по спектру, и – каждому свое.

Этот БП в отличие от предыдущих требует некоторой наладки:

  1. Подключают нагрузку на 1-2 А при 30В;
  2. R8 ставят на максимум, в крайнее верхнее по схеме положение;
  3. С помощью эталонного вольтметра (сейчас подойдет любой цифровой мультиметр) и R11 выставляют равные по абсолютной величине напряжения каналов. Может быть, если ОУ без возможности балансировки, придется подобрать R10 или R12;
  4. Подстроечником R14 выставляют P1 точно на ноль.

О ремонте БП

БП выходят из строя чаще других электронных устройств: они принимают на себя первый удар бросков сети, им много чего достается и от нагрузки. Даже если вы не намерены делать свой БП, ИБП найдется, кроме компа, в микроволновке, стиралке и др. бытовой технике. Умение диагностировать БП и знание основ электробезопасности даст возможность если не устранить неисправность самому, то уж со знанием дела поторговаться о цене с ремонтниками. Поэтому посмотрим, как производится диагностика и ремонт БП, особенно с ИИН, т.к. свыше 80% отказов приходится на их долю.

Насыщение и сквозняк

Прежде всего – о некоторых эффектах, без понимания которых работать с ИБП нельзя. Первый из них – насыщение ферромагнетиков. Они не способны принять в себя энергии более определенной величины, зависящей от свойств материала. На железе любители с насыщением сталкиваются редко, его можно намагнитить до нескольких Тл (Тесла, единица измерения магнитной индукции). При расчете железных трансформаторов индукцию берут 0,7-1,7 Тл. Ферриты выдерживают только 0,15-0,35 Тл, их петля гистерезиса «прямоугольнее», и работают на повышенных частотах, так что вероятность «заскочить в насыщение» у них на порядки выше.

Если магнитопровод насытился, индукция в нем более не растет и ЭДС вторичных обмоток пропадает, хоть бы первичка уже плавилась (помните школьную физику?). Теперь выключим первичный ток. Магнитное поле в магнитомягких материалах (магнитожесткие – это постоянные магниты) не может существовать стационарно, как электрический заряд или вода в баке. Оно начнет рассеиваться, индукция падать, и во всех обмотках наведется ЭДС противоположной относительно исходной полярности. Этот эффект достаточно широко используется в ИИН.

В отличие от насыщения, сквозной ток в полупроводниковых приборах (попросту – сквозняк) явление безусловно вредное. Он возникает вследствие формирования/рассасывания объемных зарядов в p и n областях; у биполярных транзисторов – преимущественно в базе. Полевые транзисторы и диоды Шоттки от сквозняка практически свободны.

Напр., при подаче/снятии напряжения на диод он, пока заряды не соберутся/рассосутся, проводит ток в обеих направлениях. Именно поэтому потери напряжения на диодах в выпрямителях больше 0,7В: в момент переключения часть заряда фильтрового конденсатора успевает стечь через обмотку. В выпрямителе с параллельным удвоением сквозняк стекает сразу через оба диода.

Сквозняк транзисторов вызывает выброс напряжения на коллекторе, способный испортить прибор или, если подключена нагрузка, сквозным экстратоком повредить ее. Но и без того транзисторный сквозняк увеличивает динамические потери энергии, как и диодный, и уменьшает КПД устройства. Мощные полевые транзисторы ему почти не подвержены, т.к. не накапливают заряд в базе за ее отсутствием, и поэтому переключаются очень быстро и плавно. «Почти», потому что их цепи исток-затвор защищены от обратного напряжения диодами Шоттки, которые чуточку, но сквозят.

Типы ИНН

ИБП ведут свою родословную от блокинг-генератора, поз. 1 на Рис. 6. При включении Uвх VT1 приоткрыт током через Rб, по обмотке Wк течет ток. Мгновенно вырасти до предела он не может (снова вспоминаем школьную физику), в базовой Wб и обмотке нагрузки Wн наводится ЭДС. С Wб она через Сб форсирует отпирание VT1. По Wн ток пока не течет, не пускает VD1.

Когда магнитопровод насытится, токи в Wб и Wн прекращаются. Затем за счет диссипации (рассасывания) энергии индукция падает, в обмотках наводится ЭДС противоположной полярности, и обратное напряжение Wб мгновенно запирает (блокирует) VT1, спасая его от перегрева и теплового пробоя. Поэтому такая схема и названа блокинг-генератором, или просто блокингом. Rк и Ск отсекают ВЧ помехи, которых блокинг дает хоть отбавляй. Теперь с Wн можно снять некоторую полезную мощность, но только через выпрямитель 1П. Эта фаза продолжается, пока Сб не перезарядится полностью или пока не иссякнет запасенная магнитная энергия.

Мощность эта, впрочем, невелика, до 10Вт. Если попробовать взять больше, VT1 сгорит от сильнейшего сквозняка, прежде чем заблокируется. Поскольку Тр насыщается, КПД блокинга никуда не годится: более половины запасенной в магнитопроводе энергии улетает греть иные миры. Правда, за счет того же насыщения блокинг до некоторой степени стабилизирует длительность и амплитуду своих импульсов, а схема его очень проста. Поэтому ИНН на основе блокинга часто применяют в дешевых телефонных зарядках.

Примечание: величина Сб во многом, но не полностью, как пишут в любительских справочниках, определяет период повторения импульсов. Величина его емкости должна быть увязана со свойствами и размерами магнитопровода и быстродействием транзистора.

Блокинг в свое время породил строчную развертку телевизоров с электронно-лучевыми трубками (ЭЛТ), а она – ИНН с демпферным диодом, поз. 2. Здесь УУ по сигналам от Wб и цепи обратной связи ЦОС принудительно открывает/запирает VT1 прежде чем Тр насытится. При запертом VT1 обратный ток Wк замыкается через тот самый демпферный диод VD1. Это рабочая фаза: уже большая, чем в блокинге, часть энергии снимается в нагрузку. Большая потому, что при полном насыщении вся лишняя энергия улетает, а здесь этого лишку мало. Таким путем удается снимать мощность до нескольких десятков Вт. Однако, поскольку УУ не может сработать, пока Тр не подошел к насыщению, транзистор сквозит все-таки сильно, динамические потери велики и КПД схемы оставляет желать много большего.

ИИН с демпфером до сих пор живы в телевизорах и дисплеях с ЭЛТ, поскольку в них ИИН и выход строчной развертки совмещены: мощный транзистор и Тр общие. Это намного сокращает издержки производства. Но, откровенно говоря, ИИН с демпфером принципиально чахлый: транзистор и трансформатор вынуждены все время работать на грани аварии. Инженеры, сумевшие довести эту схему до приемлемой надежности, заслуживают глубочайшего уважения, но совать туда паяльник никому, кроме мастеров, прошедших профессиональную подготовку и обладающих соответствующим опытом, настоятельно не рекомендуется.

Двухтактный ИНН с отдельным трансформатором обратной связи применяется наиболее широко, т.к. обладает наилучшими качественными показателями и надежностью. Впрочем, по части ВЧ помех и он страшно грешит по сравнению с БП «аналоговыми» (с трансформаторами на железе и СНН). В настоящее время эта схема существует во множестве модификаций; мощные биполярные транзисторы в ней почти начисто вытеснены полевыми, управляемыми спец. ИМС, но принцип действия остается неизменным. Его иллюстрирует исходная схема, поз. 3.

Устройство ограничения (УО) ограничивает ток заряда емкостей входного фильтра Сфвх1(2). Их большая величина – непременное условие работы устройства, т.к. за один рабочий цикл из них отбирается малая доля запасенной энергии. Грубо говоря, они играют роль водонапорного бака или воздушного ресивера. При заряде «накоротко» экстраток заряда может превышать 100А на время до 100 мс. Rc1 и Rc2 сопротивлением порядка МОм нужны для симметрирования напряжения фильтра, т.к. малейший разбаланс его плеч недопустим.

Когда Сфвх1(2) зарядятся, устройство запуска УЗ формирует запускающий импульс, открывающий одно из плеч (какое – все равно) инвертора VT1 VT2. По обмотке Wк большого силового трансформатора Тр2 течет ток и магнитная энергия из его сердечника через обмотку Wн почти полностью уходит на выпрямление и в нагрузку.

Небольшая часть энергии Тр2, определяемая величиной Rогр, снимается с обмотки Wос1 и подается на обмотку Wос2 маленького базового трансформатора обратной связи Тр1. Он быстро насыщается, открытое плечо закрывается и за счет диссипации в Тр2 открывается ранее закрытое, как описано для блокинга, и цикл повторяется.

В сущности, двухтактный ИИН – 2 блокинга, «пихающих» друг друга. Поскольку мощный Тр2 не насыщается, сквозняк VT1 VT2 невелик, полностью «тонет» в магнитопроводе Тр2 и в конечном итоге уходит в нагрузку. Поэтому двухтактный ИИН может быть построен на мощность до нескольких кВт.

Хуже, если он окажется в режиме ХХ. Тогда за полуцикл Тр2 успеет насытиться и сильнейший сквозняк сожжет сразу оба VT1 и VT2. Впрочем, сейчас есть в продаже силовые ферриты на индукцию до 0,6 Тл, но они дороги и от случайного перемагничивания деградируют. Разрабатываются ферриты более чем на 1 Тл, но, чтобы ИИН достигли «железной» надежности, надо хотя бы 2,5 Тл.

Методика диагностирования

При поиске неисправностей в «аналоговом» БП, если он «тупо молчит», проверяют сначала предохранители, затем защиту, РЭ и ИОН, если в нем есть транзисторы. Звонятся нормально – идем дальше поэлементно, как описано ниже.

В ИИН, если он «заводится» и тут же «глохнет», проверяют сначала УО. Ток в нем ограничивает мощный резистор малого сопротивления, затем шунтируемый оптотиристором. Если «резик» видимо подгорел, меняют его и оптрон. Прочие элементы УО выходят из строя крайне редко.

Если ИИН «молчит, как рыба об лед», диагностику начинают тоже с УО (может, «резик» совсем сгорел). Затем – УЗ. В дешевых моделях в них используются транзисторы в режиме лавинного пробоя, что далеко не весьма надежно.

Следующий этап, в любых БП – электролиты. Разрушение корпуса и вытекание электролита встречаются далеко не так часто, как пишут в рунете, но потеря емкости случается гораздо чаще, чем выход из строя активных элементов. Проверяют электролитические конденсаторы мультиметром с возможностью измерения емкости. Ниже номинала на 20% и более – опускаем «дохляка» в отстой и ставим новый, хороший.

Затем – активные элементы. Как прозванивать диоды и транзисторы вы, наверное, знаете. Но тут есть 2 каверзы. Первая – если диод Шоттки или стабилитрон звонится тестером с батарейкой на 12В, то прибор может показать пробой, хотя диод вполне исправен. Эти компоненты лучше звонить стрелочным прибором с батарейкой на 1,5-3 В.

Вторая – мощные полевики. Выше (обратили внимание?) сказано, что их И-З защищены диодами. Поэтому мощные полевые транзисторы звонятся вроде бы как исправные биполярные даже негодными, если канал «выгорел» (деградировал) не полностью.

Тут единственный доступный дома способ – замена на заведомо исправные, причем обоих сразу. Если в схеме остался горелый, он немедленно потянет за собой новый исправный. Электронщики шутят, мол, мощные полевики жить друг без друга не могут. Еще проф. шуточка – «замена гей-пары». Это к тому, что транзисторы плеч ИИН должны быть строго однотипными.

Наконец, пленочные и керамические конденсаторы. Для них характерны внутренние обрывы (находятся тем же тестером с проверкой «кондюков») и утечка или пробой под напряжением. Чтобы их «выловить», нужно собрать простенькую схемку по Рис. 7. Пошагово проверка электрических конденсаторов на пробой и утечку осуществляется так:

  • Ставим на тестере, никуда его не подключая, наименьший предел измерения постоянного напряжения (чаще всего – 0,2В или 200мВ), засекаем и записываем собственную погрешность прибора;
  • Включаем предел измерения 20В;
  • Подключаем подозрительный конденсатор в точки 3-4, тестер к 5-6, а на 1-2 подаем постоянное напряжение 24-48 В;
  • Переключаем пределы напряжения мультиметра вниз вплоть до наименьшего;
  • Если на любом тестер показал хоть что-то, кроме 0000.00 (на самом малом – что-то, кроме собственной погрешности), проверяемый конденсатор не годен.

На этом методическая часть диагностики заканчивается и начинается творческая, где все инструкции – собственные знания, опыт и соображение.

Пара импульсников

ИБП статья особая, вследствие их сложности и схемного разнообразия. Здесь мы, для начала, рассмотрим пару образцов на широтно-импульсной модуляции (ШИМ), позволяющей получить наилучшее качество ИБП. Схем на ШИМ в рунете много, но не так страшен ШИМ, как его малюют…

Для светодизайна

Просто зажечь светодиодную ленту можно от любого описанного выше БП, кроме того, что на Рис. 1, выставив требуемое напряжение. Хорошо подойдет СНН с поз. 1 Рис. 3, таких несложно сделать 3, для каналов R, G и B. Но долговечность и стабильность свечения светодиодов зависят не от приложенного к ним напряжения, а от протекающего через них тока. Поэтому хороший блок питания для светодиодной ленты должен включать в себя стабилизатор тока нагрузки; по-технически – источник стабильного тока (ИСТ).

Одна из схем стабилизации тока светоленты, доступная для повторения любителями, приведена на Рис. 8. Собрана она на интегральном таймере 555 (отечественный аналог – К1006ВИ1). Обеспечивает стабильный ток ленты от БП напряжением 9-15 В. Величина стабильного тока определяется по формуле I = 1/(2R6); в данном случае – 0,7А. Мощный транзистор VT3 – обязательно полевой, от сквозняка из-за заряда базы биполярного ШИМ просто не сформируется. Дроссель L1 намотан на ферритовом кольце 2000НМ K20x4x6 жгутом 5хПЭ 0,2 мм. К-во витков – 50. Диоды VD1 ,VD2 – любые кремниевые ВЧ (КД104, КД106); VT1 и VT2 – КТ3107 или аналоги. С КТ361 и т.п. диапазоны входного напряжения и регулировки яркости уменьшатся.

Работает схема так: вначале времязадающая емкость С1 заряжается по цепи R1VD1 и разряжается через VD2R3VT2, открытый, т.е. находящийся в режиме насыщения, через R1R5. Таймер генерирует последовательность импульсов с максимальной частотой; точнее – с минимальной скважностью. Безинерционный ключ VT3 формирует мощные импульсы, а его обвязка VD3C4C3L1 сглаживает их до постоянного тока.

Примечание: скважность серии импульсов есть отношение периода их следования к длительности импульса. Если, напр., длительность импульса 10 мкс, а промежуток между ними 100 мкс, то скважность будет 11.

Ток в нагрузке нарастает, и падение напряжения на R6 приоткрывает VT1, т.е. переводит его из режима отсечки (запирания) в активный (усилительный). Это создает цепь утечки тока базы VT2 R2VT1+Uпит и VT2 также переходит в активный режим. Ток разряда С1 уменьшается, время разряда увеличивается, скважность серии растет и среднее значение тока падает до нормы, заданной R6. В этом и есть суть ШИМ. На минимуме тока, т.е. при максимальной скважности, С1 разряжается по цепи VD2-R4-внутренний ключ таймера.

В оригинальной конструкции возможность оперативной регулировки тока и, соответственно, яркости свечения, не предусмотрена; потенциометров на 0,68 Ом не бывает. Проще всего регулировать яркость, включив после наладки в разрыв между R3 и эмиттером VT2 потенциометр R* на 3,3-10 кОм, выделено коричневым. Передвигая его движок вниз по схеме, увеличим время разряда С4, скважность и уменьшим ток. Другой способ – шунтировать базовый переход VT2, включив потенциометр примерно на 1 МОм в точки а и б (выделено красным), менее предпочтителен, т.к. регулировка получится более глубокой, но грубой и острой.

К сожалению, для налаживания этого полезного не только для светолент ИСТ нужен осциллограф:

  1. Подают на схему минимальное +Uпит.
  2. Подбором R1(импульс) и R3 (пауза) добиваются скважности 2, т.е. длительность импульса должна быть равна длительности паузы. Давать скважность меньше 2 нельзя!
  3. Подают максимальное +Uпит.
  4. Подбором R4 добиваются номинальной величины стабильного тока.

Для зарядки

На Рис. 9 – схема простейшего ИСН с ШИМ, пригодного для зарядки телефона, смартфона, планшета (ноутбук, к сожалению, не потянет) от самодельной солнечной батареи, ветрогенератора, мотоциклетного или автомобильного аккумулятора, магнето фонарика-«жучка» и др. маломощных нестабильных случайных источников электропитания. См. на схеме диапазон входных напряжений, там не ошибка. Этот ИСН и в самом деле способен выдавать на выход напряжение, большее входного. Как и в предыдущем, здесь наличествует эффект перемены полярности выхода относительно входа, это вообще фирменная фишка схем с ШИМ. Будем надеяться, что, прочитав внимательно предыдущее, вы в работе этой крохотульки разберетесь сами.

Попутно о заряде и зарядках

Заряд аккумуляторов весьма сложный и тонкий физико-химический процесс, нарушение которого в разы и десятки раз снижает их ресурс, т.е. к-во циклов заряд-разряд. Зарядное устройство должно по очень малым изменениям напряжения АКБ вычислять, сколько принято энергии и регулировать соответственно ток заряда по определенному закону. Поэтому зарядное устройство отнюдь и отнюдь не БП и заряжать от обычных БП можно только АКБ в устройствах со встроенным контроллером заряда: телефонах, смартфонах, планшетах, отдельных моделях цифровых фотокамер. А зарядка, которая зарядное устройство – предмет отдельного разговора.

    Вопрос-ремонт.ру сказал(а):

    Искрить от выпрямителя будет, но, возможно, ничего страшного. Дело в т. наз. дифференциальном выходном сопротивлении источника питания. У щелочных аккумуляторов оно порядка мОм (миллиом), у кислотных еще меньше. У транса с мостом без сглаживания – десятые и сотые доли Ом, т. е. прим. в 100 – 10 раз больше. А пусковой ток коллекторного мотора постоянного тока может быть больше рабочего раз в 6-7 и даже в 20. У вашего, скорее всего, ближе к последнему – быстро разгоняющиеся моторы компактнее и экономичнее, а огромная перегрузочная способность аккумуляторов позволяет давать движку тока, сколько съест на разгон. Транс с выпрямителем столько мгновенного тока не дадут, и двигатель разгоняется медленнее, чем на то рассчитан, и с большим скольжением якоря. От этого, от большого скольжения, и возникает искра, и в работе потом держится за счет самоиндукции в обмотках.

    Что тут можно посоветовать? Первое: приглядитесь внимательнее – как искрит? Смотреть нужно в работе, под нагрузкой, т.е. во время распиловки.

    Если искорки пляшут в отдельных местах под щетками – ничего страшного. У меня мощная конаковская дрель от рождения так искрит, и хоть бы хны. За 24 года один раз менял щетки, мыл спиртом и полировал коллектор – всего-то. Если вы подключали инструмент на 18 В к выходу 24 В, то небольшое искрение это нормально. Отмотать обмотку или погасить избыток напряжения чем-то вроде сварочного реостата (резистор прим. 0,2 Ом на мощность рассеяния от 200 Вт), чтобы в работе на моторе было номинальное напряжение и, скорее всего, искра уйдет. Если же подключали к 12 В, надеясь, что после выпрямления будет 18, то зря – выпрямленное напряжение под нагрузкой сильно садится. А коллекторному электромотору, между прочим, все равно, постоянным он током питается или переменным.

    Конкретно: возьмите 3-5 м стальной проволоки диаметром 2,5-3 мм. Сверните в спираль диаметром 100-200 мм так, чтобы витки не касались друг друга. Уложите на несгораемую диэлектрическую подкладку. Концы провода зачистите до блеска и сверните «ушами». Лучше всего сразу промазать графитовой смазкой, чтобы не окислялись. Этот реостат включается в разрыв одного из проводов, ведущих к инструменту. Само собой, что контакты должны быть винтовые, затянутые натуго, с шайбами. Подключайте всю цепь к выходу 24 В без выпрямления. Искра ушла, но и мощность на валу упала – реостат нужно уменьшить, переключить один из контактов на 1-2 витка ближе к другому. Все равно искрит, но меньше – реостат маловат, нужно добавить витков. Лучше сразу сделать реостат заведомо большим, чтобы не прикручивать добавочные секции. Хуже, если огонь по всей линии контакта щеток с коллектором или за ними тянутся искровые хвосты. Тогда к выпрямителю нужен сглаживающий фильтр где-то, по вашим данным, от 100 000 мкФ. Недешевое удовольствие. «Фильтр» в данном случае будет накопителем энергии на разгон мотора. Но может и не помочь – если габаритной мощности трансформатора маловато. КПД коллекторных электродвигателей постоянного тока прим. 0,55-0,65, т.е. транс нужен от 800-900 Вт. Т.е., если фильтр поставили, но все равно искрит с огнем под всей щеткой (под обоими, разумеется), то трансформатор не дотягивает. Да, если ставить фильтр, то и диоды моста должны быть на тройной рабочий ток, не то могут вылететь от броска тока заряда при включении в сеть. А инструмент тогда можно будет запускать спустя 5-10 с после включения в сеть, чтобы «банки» успели «накачаться».

    И хуже всего, если хвосты искр от щеток дотягиваются или почти дотягиваются до противоположной щетки. Это называется круговой огонь. Он очень быстро выжигает коллектор до полной негодности. Причин кругового огня может быть несколько. В вашем случае наиболее вероятная – мотор включался на 12 В с выпрямлением. Тогда при токе 30 А электрическая мощность в цепи 360 Вт. Скольжение якоря выходит больше 30 градусов за оборот, а это обязательно сплошной круговой огонь. Не исключено также, что якорь мотора намотан простой (не двойной) волной. Такие электромоторы лучше преодолевают мгновенные перегрузки, но уж пусковой ток у них – мама, не горюй. Точнее заочно не могу сказать, да и ни к чему – своими руками тут вряд ли что исправимо. Тогда, наверное, дешевле и проще будет найти и приобрести новые аккумуляторы. Но сначала все же попробуйте включить движок на немного повышенном напряжении через реостат (см. выше). Почти всегда таким способом удается сбить и сплошной круговой огонь ценой небольшого (до 10-15%) уменьшения мощности на валу.

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей - всё это можно вытащить из старой техники, как импортной, так и советской.

Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.


Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.


Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.


Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.


На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики - с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! .

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM 7805, LM 7809, LM 7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78 L 05, 78 L 12, 79 L 05, 79 L 08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Изготовить блок питания 12В своими руками несложно, но для этого вам потребуется изучить немного теории. В частности, из каких узлов состоит блок, за что отвечает каждый элемент изделия, основные параметры каждого. Также важно знать, какие трансформаторы необходимо использовать. Если нет подходящего, то можно перемотать вторичную обмотку самостоятельно для получения нужного напряжения на выходе. Нелишним будет узнать о методах травления печатных плат, а также про изготовление корпуса блока питания.

Компоненты блока питания

Основной элемент любого блока питания - это При его помощи происходит снижение напряжения в сети (220 Вольт) до 12 В. В конструкциях, рассмотренных ниже, можно использовать как самодельные трансформаторы с перемотанной вторичной обмоткой, так и готовые изделия, без модернизации. Нужно только учитывать все особенности и проводить правильный расчет сечения провода и количества витков.

Второй элемент по важности - это выпрямитель. Изготовляется он из одного, двух либо четырех полупроводниковых диодов. Все зависит от типа схемы, по которой собирается самодельный блок питания. Например, для реализации нужно использовать два полупроводника. Для выпрямления без увеличения достаточно одного, но лучше применить мостовую схему (все пульсации тока сглаживаются). После выпрямителя обязательно наличие электролитического конденсатора. Желательна установка стабилитрона с подходящими параметрами, он позволяет на выходе сделать стабильное напряжение.

Что такое трансформатор

Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:

  1. Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
  2. Сетевую обмоту (первичная). Запитывается от 220 Вольт.
  3. Вторичную обмотку (понижающую). Служит для подключения выпрямителя.

Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.

Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.

Как произвести расчет трансформатора

Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра - напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.

Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.

Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать (достаточно увеличить на 10%).

Диоды для блока питания

Выбор полупроводниковых диодов, используемых в выпрямителе блока питания, напрямую зависит от того, какие значения параметров трансформатора необходимо получить. Чем больше сила тока на вторичной обмотке, тем мощнее диоды необходимо использовать. Предпочтение стоит отдавать тем деталям, которые изготовлены на основе кремния. Но не стоит брать высокочастотные, так как они не предназначены для использования в выпрямительных устройствах. Их основное предназначение - детектирование высокочастотного сигнала в радиоприемных и передающих устройствах.

Идеальное решение для маломощных блоков питания - это применение диодных сборок, 12В 5А с их помощью можно разместить в гораздо меньшем корпусе. Диодные сборки - это набор из четырех полупроводниковых диодов. Используются они исключительно для выпрямления переменного тока. Работать с ними гораздо удобней, не нужно делать много соединений, достаточно на два вывода подать напряжение от вторичной обмотки трансформатора, а с оставшихся снять постоянное.

Стабилизация напряжения

После изготовления трансформатора обязательно проведите замер напряжения на выводах его вторичной обмотки. Если оно превышает значение 12 Вольт, то необходимо провести стабилизацию. Даже самый простой блок питания 12В плохо будет работать без этого. Следует учесть, что в питающей сети величина напряжения непостоянна. Подключите вольтметр к розетке и проведите замеры в разное время. Так, например, днем оно может подскочить до 240 Вольт, а вечером опуститься даже до 180. Все зависит от нагрузки на линию электропередач.

Если у вас в первичной обмотке трансформатора изменяется напряжение, то оно будет нестабильно и во вторичной. Чтобы компенсировать это, нужно применить устройства, называемые стабилизаторами напряжения. В нашем случае можно использовать стабилитроны с подходящей величиной параметров (тока и напряжения). Стабилитронов множество, подберите необходимые элементы до того, как делать 12В блок питания.

Существуют и более «продвинутые» элементы (типа КР142ЕН12), которые представляют собой комплект из нескольких стабилитронов и пассивных элементов. Их характеристики намного лучше. Также встречаются и зарубежные аналоги подобных устройств. Необходимо познакомиться с этими элементами до того, как сделать12В блок питания вы решите самостоятельно.

Особенности импульсных блоков питания

Блоки питания такого типа нашли широкое применение в персональных компьютерах. У них на выходе имеется два значения напряжения: 12 Вольт - для питания приводов дисководов, 5 Вольт - для функционирования микропроцессоров и иных устройств. Отличие от простых блоков питания состоит в том, что на выходе сигнал не постоянный, а импульсный - по форме похож на прямоугольники. В первый период времени сигнал появляется, во второй он равен нулю.

Также имеются отличия и в схеме устройства. Для нормального функционирования самодельный импульсный блок питания нуждается в выпрямлении сетевого напряжения без предварительного понижения его значения (на входе отсутствует трансформатор). Использовать импульсные блоки питания можно как самостоятельные устройства, так и их модернизированные аналоги - аккумуляторные батареи. В итоге можно получить простейший бесперебойник, причем его мощность будет зависеть от параметров блока питания и типа используемых батарей.

Как получить бесперебойное питание?

Блок питания достаточно подключить параллельно аккумуляторной батарее, чтобы при выключении электричества все устройства продолжили работать в нормальном режиме. При подключенной сети блок питания производит зарядку батареи, принцип схож с работой электроснабжения автомобиля. А когда бесперебойный блок питания 12В отключаете от сети, происходит подача напряжения на всю аппаратуру от аккумулятора.

Но бывают случаи, когда необходимо на выходе получить сетевое напряжение 220 Вольт, например, для питания персональных компьютеров. В этом случае потребуется внедрение в схему инвертора - устройства, которое преобразует постоянное напряжение 12 Вольт в переменное 220. Схема оказывается сложнее, нежели у простого блока питания, но собрать его можно.

Фильтрация и отсечение переменной составляющей

Важное место в выпрямительной технике занимают фильтры. Взгляните на блок питания 12В, схема которого наиболее распространена. Она состоит из конденсатора, сопротивления. Фильтры отсекают все лишние гармоники, оставляя на выходе блока питания постоянное напряжение. Например, простейший фильтр - это электролитический конденсатор с большой емкостью. Если взглянуть на его работу при постоянном и переменном напряжениях, то становится ясен его принцип функционирования.

В первом случае он имеет определенное сопротивление и в схеме замещения он может быть заменен на постоянный резистор. Актуально это для проведения расчетов по теоремам Кирхгофа.

Во втором случае (при протекании переменного тока) конденсатор становится проводником. Другими словами, его можно заменить перемычкой, у которой нет сопротивления. Она соединит оба выхода. При более подробном изучении можно увидеть, что переменная составляющая уйдет, ведь выходы замыкаются во время протекании тока. Останется только постоянное напряжение. Кроме того, для быстрого разряда конденсаторов собираемый блок питания 12В своими руками необходимо на выходе укомплектовать резистором с большим сопротивлением (3-5 МОм).

Изготовление корпуса

Для изготовления корпуса блока питания идеально подойдут алюминиевые уголки и пластины. Сначала необходимо сделать своеобразный скелет конструкции, который впоследствии можно обшить листами из алюминия подходящей формы. Для уменьшения веса блока питания можно в качестве обшивки использовать более тонкий металл. Изготовить блок питания 12В своими руками из таких подручных материалов несложно.

Идеально подойдет корпус от микроволновой печи. Во-первых, металл достаточно тонкий и легкий. Во-вторых, если сделать все аккуратно, то лакокрасочное покрытие не повредится, поэтому внешний вид останется привлекательным. В-третьих, размер обшивки микроволновой печи довольно большой, что позволяет сделать практически любой корпус.

Изготовление печатной платы

Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок

Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.

Как протравить плату

Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.

Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа - плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.

Монтаж компонентов

После процедуры травления вам потребуется ополоснуть плату, очистить от защитного слоя дорожки, обезжирить их. Наметьте расположение всех элементов, просверлите отверстия для них. Больше 1,2-мм сверло не стоит применять. Установите все элементы и припаяйте их к дорожкам. После этого необходимо все дорожки покрыть слоем олова, т. е. произвести их лужение. Изготовленный блок питания 12В своими руками с лужением монтажных дорожек прослужит вам намного дольше.